Agent WARPP: Workflow Adherence via Runtime Parallel Personalization
- URL: http://arxiv.org/abs/2507.19543v1
- Date: Wed, 23 Jul 2025 23:27:49 GMT
- Title: Agent WARPP: Workflow Adherence via Runtime Parallel Personalization
- Authors: Maria Emilia Mazzolenis, Ruirui Zhang,
- Abstract summary: Large language models (LLMs) are increasingly applied in task-oriented dialogue (TOD) systems.<n>We present Adherence via Parallel Personalization, or WARPP, a training-free, modular framework that combines multi-agent runtime with orchestration.<n>By dynamically pruning conditional branches based on user attributes, the framework reduces reasoning overhead and narrows tool selection at runtime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are increasingly applied in task-oriented dialogue (TOD) systems but often struggle with long, conditional workflows that involve external tool calls and depend on user-specific information. We present Workflow Adherence via Runtime Parallel Personalization, or WARPP, a training-free, modular framework that combines multi-agent orchestration with runtime personalization to improve workflow adherence in LLM-based systems. By dynamically pruning conditional branches based on user attributes, the framework reduces reasoning overhead and narrows tool selection at runtime. WARPP deploys a parallelized architecture where a dedicated Personalizer agent operates alongside modular, domain-specific agents to dynamically tailor execution paths in real time. The framework is evaluated across five representative user intents of varying complexity within three domains: banking, flights, and healthcare. Our evaluation leverages synthetic datasets and LLM-powered simulated users to test scenarios with conditional dependencies. Our results demonstrate that WARPP outperforms both the non-personalized method and the ReAct baseline, achieving increasingly larger gains in parameter fidelity and tool accuracy as intent complexity grows, while also reducing average token usage, without any additional training.
Related papers
- HAWK: A Hierarchical Workflow Framework for Multi-Agent Collaboration [3.2588674134593942]
Multi-agent systems face persistent challenges in cross-platform interoperability, dynamic task scheduling, and efficient resource sharing.<n>We propose Hierarchical Agent (Hawk), a modular framework comprising five layers-User, Operator, Agent, Resource-and supported by sixteen standardized interfaces.<n>Hawk delivers an end-to-end pipeline covering task parsing, workflow orchestration, intelligent scheduling, resource invocation, and data synchronization.
arXiv Detail & Related papers (2025-07-05T15:03:53Z) - PersonaAgent: When Large Language Model Agents Meet Personalization at Test Time [87.99027488664282]
PersonaAgent is a framework designed to address versatile personalization tasks.<n>It integrates a personalized memory module and a personalized action module.<n>Test-time user-preference alignment strategy ensures real-time user preference alignment.
arXiv Detail & Related papers (2025-06-06T17:29:49Z) - ARPO:End-to-End Policy Optimization for GUI Agents with Experience Replay [88.74638385288773]
Agentic Replay Policy Optimization improves performance on complex, long-horizon computer tasks.<n>We propose a task selection strategy that filters tasks based on baseline agent performance.<n>Experiments on the OSWorld benchmark demonstrate that ARPO achieves competitive results.
arXiv Detail & Related papers (2025-05-22T06:24:32Z) - Dynamic benchmarking framework for LLM-based conversational data capture [0.0]
This paper introduces a benchmarking framework to assess large language models (LLMs)<n>It integrates generative agent simulation to evaluate performance on key dimensions: information extraction, context awareness, and adaptive engagement.<n>Results show that adaptive strategies improve data extraction accuracy, especially when handling ambiguous responses.
arXiv Detail & Related papers (2025-02-04T15:47:47Z) - Flow: Modularized Agentic Workflow Automation [53.073598156915615]
Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution.<n>However, the effective adjustment of agentic during execution has not been well studied.<n>In this paper, we define an activity-on-vertex (AOV) graph, which allows continuous workflow refinement by agents.<n>Our proposed multi-agent framework achieves efficient concurrent execution of subtasks, effective goal achievement, and enhanced error tolerance.
arXiv Detail & Related papers (2025-01-14T04:35:37Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorfBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.<n>We also present WorfEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.<n>We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.<n>Recent works have started exploiting large language models (LLM) to lessen such burden.<n>This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - The Compressor-Retriever Architecture for Language Model OS [20.56093501980724]
This paper explores the concept of using a language model as the core component of an operating system (OS)
A key challenge in realizing such an LM OS is managing the life-long context and ensuring statefulness across sessions.
We introduce compressor-retriever, a model-agnostic architecture designed for life-long context management.
arXiv Detail & Related papers (2024-09-02T23:28:15Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.