Street network sub-patterns and travel mode
- URL: http://arxiv.org/abs/2507.19648v1
- Date: Fri, 25 Jul 2025 19:49:51 GMT
- Title: Street network sub-patterns and travel mode
- Authors: Juan Fernando Riascos Goyes, Michael Lowry, Nicolás Guarín Zapata, Juan Pablo Ospina,
- Abstract summary: We classified the built environment of nine U.S. metropolitan areas using structural indicators such as density, connectivity, and spatial configuration.<n>The resulting morphological types were linked to mobility patterns through descriptive statistics, marginal effects estimation, and post hoc statistical testing.<n>These results suggest that urban form should be treated as a key variable in mobility planning and provide empirical support for incorporating spatial typologies into sustainable urban policy design.
- Score: 0.5670066649802191
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban morphology has long been recognized as a factor shaping human mobility, yet comparative and formal classifications of urban form across metropolitan areas remain limited. Building on theoretical principles of urban structure and advances in unsupervised learning, we systematically classified the built environment of nine U.S. metropolitan areas using structural indicators such as density, connectivity, and spatial configuration. The resulting morphological types were linked to mobility patterns through descriptive statistics, marginal effects estimation, and post hoc statistical testing. Here we show that distinct urban forms are systematically associated with different mobility behaviors, such as reticular morphologies being linked to significantly higher public transport use (marginal effect = 0.49) and reduced car dependence (-0.41), while organic forms are associated with increased car usage (0.44), and substantial declines in public transport (-0.47) and active mobility (-0.30). These effects are statistically robust (p < 1e-19), highlighting that the spatial configuration of urban areas plays a fundamental role in shaping transportation choices. Our findings extend previous work by offering a reproducible framework for classifying urban form and demonstrate the added value of morphological analysis in comparative urban research. These results suggest that urban form should be treated as a key variable in mobility planning and provide empirical support for incorporating spatial typologies into sustainable urban policy design.
Related papers
- FloGAN: Scenario-Based Urban Mobility Flow Generation via Conditional GANs and Dynamic Region Decoupling [2.579904461452466]
Existing generative models rely heavily on historical trajectories and often overlook evolving factors like changes in population density and land use.<n>Mechanistic approaches incorporate population density and facility distribution but assume static scenarios.<n>This study introduces a data-driven approach for generating origin-destination mobility flows tailored to simulated urban scenarios.
arXiv Detail & Related papers (2025-07-16T09:12:38Z) - Commute Networks as a Signature of Urban Socioeconomic Performance: Evaluating Mobility Structures with Deep Learning Models [44.99833362998488]
We propose using commute information records as a reliable and comprehensive source to construct mobility networks across cities.<n>We show that mobility network structures provide significant predictive performance without considering any node features.<n>Our experiments in 12 major U.S. cities show the proposed model outperforms previous conventional machine learning models.
arXiv Detail & Related papers (2025-07-05T12:38:59Z) - Exploring the effect of spatial scales in studying urban mobility pattern [0.0]
This paper explores the impact of spatial scales on the performance of the gravity model in explaining urban mobility patterns using public transport flow data in Singapore.<n>Results indicate the existence of an optimal intermediate spatial scale at which the gravity model performs best.
arXiv Detail & Related papers (2025-06-20T05:39:39Z) - Interpreting core forms of urban morphology linked to urban functions with explainable graph neural network [9.236240033348516]
This study proposed the concept of core urban morphology representation and developed an explainable deep learning framework for explicably symbolizing complex urban forms.<n>We analyzed the core urban forms at the individual-building, block, and neighborhood level that are important to corresponding urban functions.<n>We prove that urban morphology directly affects land use efficiency, which has a significantly strong correlation with the location.
arXiv Detail & Related papers (2025-02-22T12:24:46Z) - Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
We propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs)<n>We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning.<n>Experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability.
arXiv Detail & Related papers (2025-01-20T07:12:40Z) - InclusiViz: Visual Analytics of Human Mobility Data for Understanding and Mitigating Urban Segregation [41.758626973743525]
InclusiViz is a novel visual analytics system for multi-level analysis of urban segregation.<n>We developed a deep learning model to predict mobility patterns across social groups using environmental features, augmented with explainable AI.<n>The system integrates innovative visualizations that allow users to explore segregation patterns from broad overviews to fine-grained detail.
arXiv Detail & Related papers (2025-01-07T07:50:36Z) - COLA: Cross-city Mobility Transformer for Human Trajectory Simulation [44.157114416533915]
We develop a Cross-city mObiLity trAnsformer (COLA) with a dedicated model-agnostic transfer framework.
COLA divides the Transformer into the private modules for city-specific characteristics and the shared modules for city-universal mobility patterns.
Our implemented cross-city baselines have demonstrated its superiority and effectiveness.
arXiv Detail & Related papers (2024-03-04T07:45:29Z) - Using machine learning to understand causal relationships between urban
form and travel CO2 emissions across continents [9.204800002382044]
We find significant causal effects of urban form on trip emissions and inter-feature effects, which had been neglected in previous work.
In more monocentric cities, we identify spatial corridors where subcenter-oriented development is more relevant than increased access to the main center.
Our work demonstrates a novel application of machine learning that enables new research addressing the needs of causality, generalizability, and contextual specificity for scaling evidence-based urban climate solutions.
arXiv Detail & Related papers (2023-08-31T09:57:52Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - Urban form and COVID-19 cases and deaths in Greater London: an urban
morphometric approach [63.29165619502806]
The COVID-19 pandemic generated a considerable debate in relation to urban density.
This is an old debate, originated in mid 19th century's England with the emergence of public health and urban planning disciplines.
We describe urban form at individual building level and then aggregate information for official neighbourhoods.
arXiv Detail & Related papers (2022-10-16T10:01:10Z) - Neural Embeddings of Urban Big Data Reveal Emergent Structures in Cities [7.148078723492643]
We propose using a neural embedding model-graph neural network (GNN)- that leverages the heterogeneous features of urban areas.
Using large-scale high-resolution mobility data sets from millions of aggregated and anonymized mobile phone users in 16 metropolitan counties in the United States, we demonstrate that our embeddings encode complex relationships among features related to urban components.
We show that embeddings generated by a model trained on a different county can capture 50% to 60% of the emergent spatial structure in another county.
arXiv Detail & Related papers (2021-10-24T07:13:14Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Transportation Density Reduction Caused by City Lockdowns Across the
World during the COVID-19 Epidemic: From the View of High-resolution Remote
Sensing Imagery [48.52477000522933]
The COVID-19 epidemic began to worsen in the first months of 2020.
stringent lockdown policies were implemented in numerous cities throughout the world to control human transmission and mitigate its spread.
We provide a quantitative investigation of the transportation density reduction before and after lockdown was implemented in six epicenter cities.
arXiv Detail & Related papers (2021-03-02T13:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.