ForCenNet: Foreground-Centric Network for Document Image Rectification
- URL: http://arxiv.org/abs/2507.19804v1
- Date: Sat, 26 Jul 2025 05:36:48 GMT
- Title: ForCenNet: Foreground-Centric Network for Document Image Rectification
- Authors: Peng Cai, Qiang Li, Kaicheng Yang, Dong Guo, Jia Li, Nan Zhou, Xiang An, Ninghua Yang, Jiankang Deng,
- Abstract summary: We introduce Foreground-Centric Network (ForCenNet) to eliminate geometric distortions in document images.<n>Extensive experiments demonstrate that ForCenNet achieves new state-of-the-art on four real-world benchmarks.
- Score: 36.95028425490806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Document image rectification aims to eliminate geometric deformation in photographed documents to facilitate text recognition. However, existing methods often neglect the significance of foreground elements, which provide essential geometric references and layout information for document image correction. In this paper, we introduce Foreground-Centric Network (ForCenNet) to eliminate geometric distortions in document images. Specifically, we initially propose a foreground-centric label generation method, which extracts detailed foreground elements from an undistorted image. Then we introduce a foreground-centric mask mechanism to enhance the distinction between readable and background regions. Furthermore, we design a curvature consistency loss to leverage the detailed foreground labels to help the model understand the distorted geometric distribution. Extensive experiments demonstrate that ForCenNet achieves new state-of-the-art on four real-world benchmarks, such as DocUNet, DIR300, WarpDoc, and DocReal. Quantitative analysis shows that the proposed method effectively undistorts layout elements, such as text lines and table borders. The resources for further comparison are provided at https://github.com/caipeng328/ForCenNet.
Related papers
- Geometry Restoration and Dewarping of Camera-Captured Document Images [0.0]
This research focuses on developing a method for restoring the topology of digital images of paper documents captured by a camera.<n>Our methodology employs deep learning (DL) for document outline detection, followed by computer vision (CV) to create a topological 2D grid.
arXiv Detail & Related papers (2025-01-06T17:12:19Z) - Block and Detail: Scaffolding Sketch-to-Image Generation [65.56590359051634]
We introduce a novel sketch-to-image tool that aligns with the iterative refinement process of artists.
Our tool lets users sketch blocking strokes to coarsely represent the placement and form of objects and detail strokes to refine their shape and silhouettes.
We develop a two-pass algorithm for generating high-fidelity images from such sketches at any point in the iterative process.
arXiv Detail & Related papers (2024-02-28T07:09:31Z) - DocMAE: Document Image Rectification via Self-supervised Representation
Learning [144.44748607192147]
We present DocMAE, a novel self-supervised framework for document image rectification.
We first mask random patches of the background-excluded document images and then reconstruct the missing pixels.
With such a self-supervised learning approach, the network is encouraged to learn the intrinsic structure of deformed documents.
arXiv Detail & Related papers (2023-04-20T14:27:15Z) - Deep Unrestricted Document Image Rectification [110.61517455253308]
We present DocTr++, a novel unified framework for document image rectification.
We upgrade the original architecture by adopting a hierarchical encoder-decoder structure for multi-scale representation extraction and parsing.
We contribute a real-world test set and metrics applicable for evaluating the rectification quality.
arXiv Detail & Related papers (2023-04-18T08:00:54Z) - Geometric Representation Learning for Document Image Rectification [137.75133384124976]
We present DocGeoNet for document image rectification by introducing explicit geometric representation.
Our motivation arises from the insight that 3D shape provides global unwarping cues for rectifying a distorted document image.
Experiments show the effectiveness of our framework and demonstrate the superiority of our framework over state-of-the-art methods.
arXiv Detail & Related papers (2022-10-15T01:57:40Z) - Fourier Document Restoration for Robust Document Dewarping and
Recognition [73.44057202891011]
This paper presents FDRNet, a Fourier Document Restoration Network that can restore documents with different distortions.
It dewarps documents by a flexible Thin-Plate Spline transformation which can handle various deformations effectively without requiring deformation annotations in training.
It outperforms the state-of-the-art by large margins on both dewarping and text recognition tasks.
arXiv Detail & Related papers (2022-03-18T12:39:31Z) - RectiNet-v2: A stacked network architecture for document image dewarping [16.249023269158734]
We propose an end-to-end CNN architecture that can produce distortion free document images from warped documents it takes as input.
We train this model on warped document images simulated synthetically to compensate for lack of enough natural data.
We evaluate our method on the DocUNet dataset, a benchmark in this domain, and obtain results comparable to state-of-the-art methods.
arXiv Detail & Related papers (2021-02-01T19:26:17Z) - Multiple Document Datasets Pre-training Improves Text Line Detection
With Deep Neural Networks [2.5352713493505785]
We introduce a fully convolutional network for the document layout analysis task.
Our method Doc-UFCN relies on a U-shaped model trained from scratch for detecting objects from historical documents.
We show that Doc-UFCN outperforms state-of-the-art methods on various datasets.
arXiv Detail & Related papers (2020-12-28T09:48:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.