Sequence-based protein-protein interaction prediction and its applications in drug discovery
- URL: http://arxiv.org/abs/2507.19805v1
- Date: Sat, 26 Jul 2025 05:37:55 GMT
- Title: Sequence-based protein-protein interaction prediction and its applications in drug discovery
- Authors: François Charih, James R. Green, Kyle K. Biggar,
- Abstract summary: We outline the state-of the-art for sequence-based PPI prediction methods and explore their impact on target identification and drug discovery.<n>We provide examples of PPI prediction in systems-level analyses, target identification, and design of therapeutic peptides and antibodies.
- Score: 0.6827423171182154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aberrant protein-protein interactions (PPIs) underpin a plethora of human diseases, and disruption of these harmful interactions constitute a compelling treatment avenue. Advances in computational approaches to PPI prediction have closely followed progress in deep learning and natural language processing. In this review, we outline the state-of the-art for sequence-based PPI prediction methods and explore their impact on target identification and drug discovery. We begin with an overview of commonly used training data sources and techniques used to curate these data to enhance the quality of the training set. Subsequently, we survey various PPI predictor types, including traditional similarity-based approaches, and deep learning-based approaches with a particular emphasis on the transformer architecture. Finally, we provide examples of PPI prediction in systems-level proteomics analyses, target identification, and design of therapeutic peptides and antibodies. We also take the opportunity to showcase the potential of PPI-aware drug discovery models in accelerating therapeutic development.
Related papers
- PRING: Rethinking Protein-Protein Interaction Prediction from Pairs to Graphs [80.08310253195144]
PRING is the first benchmark that evaluates protein-protein interaction prediction from a graph-level perspective.<n> PRING curates a high-quality, multi-species PPI network dataset comprising 21,484 proteins and 186,818 interactions.
arXiv Detail & Related papers (2025-07-07T15:21:05Z) - KEPLA: A Knowledge-Enhanced Deep Learning Framework for Accurate Protein-Ligand Binding Affinity Prediction [60.23701115249195]
KEPLA is a novel deep learning framework that integrates prior knowledge from Gene Ontology and ligand properties to enhance prediction performance.<n> Experiments on two benchmark datasets demonstrate that KEPLA consistently outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2025-06-16T08:02:42Z) - Joint Masked Reconstruction and Contrastive Learning for Mining Interactions Between Proteins [4.254824555546419]
Protein-protein interaction (PPI) prediction is an instrumental means in elucidating the mechanisms underlying cellular operations.<n>This paper introduces a novel PPI prediction method jointing masked reconstruction and contrastive learning, termed JmcPPI.<n>Extensive experiments conducted on three widely utilized PPI datasets demonstrate that JmcPPI surpasses existing optimal baseline models.
arXiv Detail & Related papers (2025-03-06T17:39:12Z) - MAPE-PPI: Towards Effective and Efficient Protein-Protein Interaction
Prediction via Microenvironment-Aware Protein Embedding [82.31506767274841]
Protein-Protein Interactions (PPIs) are fundamental in various biological processes and play a key role in life activities.
MPAE-PPI encodes microenvironments into chemically meaningful discrete codes via a sufficiently large microenvironment "vocabulary"
MPAE-PPI can scale to PPI prediction with millions of PPIs with superior trade-offs between effectiveness and computational efficiency.
arXiv Detail & Related papers (2024-02-22T09:04:41Z) - Enhancing Acute Kidney Injury Prediction through Integration of Drug
Features in Intensive Care Units [0.0]
The relationship between acute kidney injury (AKI) prediction and nephrotoxic drugs has yet to be explored in the critical care setting.
This study proposes a novel approach that leverages patient prescription data as a modality to improve existing models for AKI prediction.
arXiv Detail & Related papers (2024-01-09T05:42:32Z) - AI driven B-cell Immunotherapy Design [0.0]
The effectiveness of antigen neutralisation and elimination hinges upon the strength, sensitivity, and specificity of the paratope-epitope interaction.
In recent years, artificial intelligence and machine learning methods have made significant strides, revolutionising the prediction of protein structures and their complexes.
This review focuses on the progress of machine learning-based tools and their frameworks in the domain of B-cell immunotherapy design.
arXiv Detail & Related papers (2023-09-03T09:14:10Z) - Efficient Prediction of Peptide Self-assembly through Sequential and
Graphical Encoding [57.89530563948755]
This work provides a benchmark analysis of peptide encoding with advanced deep learning models.
It serves as a guide for a wide range of peptide-related predictions such as isoelectric points, hydration free energy, etc.
arXiv Detail & Related papers (2023-07-17T00:43:33Z) - MCPI: Integrating Multimodal Data for Enhanced Prediction of Compound
Protein Interactions [15.5883647480458]
The identification of compound-protein interactions (CPI) plays a critical role in drug screening, drug repurposing, and combination therapy studies.
The effectiveness of CPI prediction relies heavily on the features extracted from both compounds and target proteins.
This study proposed a novel model named MCPI, which is designed to improve the prediction performance of CPI.
arXiv Detail & Related papers (2023-06-15T07:20:26Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - A Supervised Machine Learning Approach for Sequence Based
Protein-protein Interaction (PPI) Prediction [4.916874464940376]
Computational protein-protein interaction (PPI) prediction techniques can contribute greatly in reducing time, cost and false-positive interactions.
We have described our submitted solution with the results of the SeqPIP competition.
arXiv Detail & Related papers (2022-03-23T18:27:25Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
DeepRelations is a physics-inspired deep relational network with intrinsically explainable architecture.
It shows superior interpretability to the state-of-the-art.
It boosts the AUPRC of contact prediction 9.5, 16.9, 19.3 and 5.7-fold for the test, compound-unique, protein-unique, and both-unique sets.
arXiv Detail & Related papers (2019-12-29T00:14:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.