ASNN: Learning to Suggest Neural Architectures from Performance Distributions
- URL: http://arxiv.org/abs/2507.20164v1
- Date: Sun, 27 Jul 2025 07:39:33 GMT
- Title: ASNN: Learning to Suggest Neural Architectures from Performance Distributions
- Authors: Jinwook Hong,
- Abstract summary: Architecture of a neural network (NN) plays a critical role in determining its performance.<n>There is no general closed-form function that maps between network structure and accuracy.<n>We propose the Architecture Suggesting Network (ASNN), a model designed to learn the relationship between NN architecture and its test accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The architecture of a neural network (NN) plays a critical role in determining its performance. However, there is no general closed-form function that maps between network structure and accuracy, making the process of architecture design largely heuristic or search-based. In this study, we propose the Architecture Suggesting Neural Network (ASNN), a model designed to learn the relationship between NN architecture and its test accuracy, and to suggest improved architectures accordingly. To train ASNN, we constructed datasets using TensorFlow-based models with varying numbers of layers and nodes. Experimental results were collected for both 2-layer and 3-layer architectures across a grid of configurations, each evaluated with 10 repeated trials to account for stochasticity. Accuracy values were treated as inputs, and architectural parameters as outputs. The trained ASNN was then used iteratively to predict architectures that yield higher performance. In both 2-layer and 3-layer cases, ASNN successfully suggested architectures that outperformed the best results found in the original training data. Repeated prediction and retraining cycles led to the discovery of architectures with improved mean test accuracies, demonstrating the model's capacity to generalize the performance-structure relationship. These results suggest that ASNN provides an efficient alternative to random search for architecture optimization, and offers a promising approach toward automating neural network design. "Parts of the manuscript, including text editing and expression refinement, were supported by OpenAI's ChatGPT. All content was reviewed and verified by the authors."
Related papers
- Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
We propose a neural network weight encoding method for network property prediction.<n>Our approach is capable of encoding neural networks in a model zoo of mixed architecture.<n>We introduce two new tasks for neural network property prediction: cross-dataset and cross-architecture.
arXiv Detail & Related papers (2023-05-26T04:34:28Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
We propose a neural architecture search method named FlowNAS to automatically find the better encoder architecture for flow estimation task.
Experimental results show that the discovered architecture with the weights inherited from the super-network achieves 4.67% F1-all error on KITTI.
arXiv Detail & Related papers (2022-07-04T09:05:25Z) - Learning Interpretable Models Through Multi-Objective Neural
Architecture Search [0.9990687944474739]
We propose a framework to optimize for both task performance and "introspectability," a surrogate metric for aspects of interpretability.
We demonstrate that jointly optimizing for task error and introspectability leads to more disentangled and debuggable architectures that perform within error.
arXiv Detail & Related papers (2021-12-16T05:50:55Z) - Network Graph Based Neural Architecture Search [57.78724765340237]
We search neural network by rewiring the corresponding graph and predict the architecture performance by graph properties.
Because we do not perform machine learning over the entire graph space, the searching process is remarkably efficient.
arXiv Detail & Related papers (2021-12-15T00:12:03Z) - Homogeneous Architecture Augmentation for Neural Predictor [13.35821898997164]
Neural Architecture Search (NAS) can automatically design well-performed architectures of Deep Neural Networks (DNNs) for the tasks at hand.
One bottleneck of NAS is the computational cost largely due to the expensive performance evaluation.
Despite their popularity, they also suffer a severe limitation: the shortage of annotated DNN architectures for effectively training the neural predictors.
arXiv Detail & Related papers (2021-07-28T03:46:33Z) - Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search [63.39818029362661]
We present a model based on Neural Architecture Search (NAS) and self-learning for received signal strength ( RSS) map reconstruction.
The approach first finds an optimal NN architecture and simultaneously train the deduced model over some ground-truth measurements of a given ( RSS) map.
Experimental results show that signal predictions of this second model outperforms non-learning based state-of-the-art techniques and NN models with no architecture search.
arXiv Detail & Related papers (2021-05-17T12:19:22Z) - Differentiable Neural Architecture Learning for Efficient Neural Network
Design [31.23038136038325]
We introduce a novel emph architecture parameterisation based on scaled sigmoid function.
We then propose a general emphiable Neural Architecture Learning (DNAL) method to optimize the neural architecture without the need to evaluate candidate neural networks.
arXiv Detail & Related papers (2021-03-03T02:03:08Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
We present an accuracy predictor that scores architecture and training recipes jointly, guiding both sample selection and ranking.
We run fast evolutionary searches in just CPU minutes to generate architecture-recipe pairs for a variety of resource constraints.
FBNetV3 makes up a family of state-of-the-art compact neural networks that outperform both automatically and manually-designed competitors.
arXiv Detail & Related papers (2020-06-03T05:20:21Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z) - Bayesian Neural Architecture Search using A Training-Free Performance
Metric [7.775212462771685]
Recurrent neural networks (RNNs) are a powerful approach for time series prediction.
This paper proposes to tackle the architecture optimization problem with a variant of the Bayesian Optimization (BO) algorithm.
Also, we propose three fixed-length encoding schemes to cope with the variable-length architecture representation.
arXiv Detail & Related papers (2020-01-29T08:42:58Z) - Inferring Convolutional Neural Networks' accuracies from their
architectural characterizations [0.0]
We study the relationships between a CNN's architecture and its performance.
We show that the attributes can be predictive of the networks' performance in two specific computer vision-based physics problems.
We use machine learning models to predict whether a network can perform better than a certain threshold accuracy before training.
arXiv Detail & Related papers (2020-01-07T16:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.