Motion-example-controlled Co-speech Gesture Generation Leveraging Large Language Models
- URL: http://arxiv.org/abs/2507.20220v1
- Date: Sun, 27 Jul 2025 10:59:29 GMT
- Title: Motion-example-controlled Co-speech Gesture Generation Leveraging Large Language Models
- Authors: Bohong Chen, Yumeng Li, Youyi Zheng, Yao-Xiang Ding, Kun Zhou,
- Abstract summary: We present MECo, a framework for motion-example-controlled co-speech gesture generation by leveraging large language models (LLMs)<n>Our method capitalizes on LLMs' comprehension capabilities through fine-tuning to simultaneously interpret speech audio and motion examples.<n>Our framework enables granular control of individual body parts and accommodates diverse input modalities including motion clips, static poses, human video sequences, and textual descriptions.
- Score: 33.614886497394785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The automatic generation of controllable co-speech gestures has recently gained growing attention. While existing systems typically achieve gesture control through predefined categorical labels or implicit pseudo-labels derived from motion examples, these approaches often compromise the rich details present in the original motion examples. We present MECo, a framework for motion-example-controlled co-speech gesture generation by leveraging large language models (LLMs). Our method capitalizes on LLMs' comprehension capabilities through fine-tuning to simultaneously interpret speech audio and motion examples, enabling the synthesis of gestures that preserve example-specific characteristics while maintaining speech congruence. Departing from conventional pseudo-labeling paradigms, we position motion examples as explicit query contexts within the prompt structure to guide gesture generation. Experimental results demonstrate state-of-the-art performance across three metrics: Fr\'echet Gesture Distance (FGD), motion diversity, and example-gesture similarity. Furthermore, our framework enables granular control of individual body parts and accommodates diverse input modalities including motion clips, static poses, human video sequences, and textual descriptions. Our code, pre-trained models, and videos are available at https://robinwitch.github.io/MECo-Page.
Related papers
- SynMotion: Semantic-Visual Adaptation for Motion Customized Video Generation [56.90807453045657]
SynMotion is a motion-customized video generation model that jointly leverages semantic guidance and visual adaptation.<n>At the semantic level, we introduce the dual-em semantic comprehension mechanism which disentangles subject and motion representations.<n>At the visual level, we integrate efficient motion adapters into a pre-trained video generation model to enhance motion fidelity and temporal coherence.
arXiv Detail & Related papers (2025-06-30T10:09:32Z) - Co-Speech Gesture Video Generation via Motion-Decoupled Diffusion Model [17.98911328064481]
Co-speech gestures can achieve superior visual effects in human-machine interaction.
We present a novel motion-decoupled framework to generate co-speech gesture videos.
Our proposed framework significantly outperforms existing approaches in both motion and video-related evaluations.
arXiv Detail & Related papers (2024-04-02T11:40:34Z) - ConvoFusion: Multi-Modal Conversational Diffusion for Co-Speech Gesture Synthesis [50.69464138626748]
We present ConvoFusion, a diffusion-based approach for multi-modal gesture synthesis.
Our method proposes two guidance objectives that allow the users to modulate the impact of different conditioning modalities.
Our method is versatile in that it can be trained either for generating monologue gestures or even the conversational gestures.
arXiv Detail & Related papers (2024-03-26T17:59:52Z) - Freetalker: Controllable Speech and Text-Driven Gesture Generation Based
on Diffusion Models for Enhanced Speaker Naturalness [45.90256126021112]
We introduce FreeTalker, which is the first framework for the generation of both spontaneous (e.g., co-speech gesture) and non-spontaneous (e.g., moving around the podium) speaker motions.
Specifically, we train a diffusion-based model for speaker motion generation that employs unified representations of both speech-driven gestures and text-driven motions.
arXiv Detail & Related papers (2024-01-07T13:01:29Z) - QPGesture: Quantization-Based and Phase-Guided Motion Matching for
Natural Speech-Driven Gesture Generation [8.604430209445695]
Speech-driven gesture generation is highly challenging due to the random jitters of human motion.
We introduce a novel quantization-based and phase-guided motion-matching framework.
Our method outperforms recent approaches on speech-driven gesture generation.
arXiv Detail & Related papers (2023-05-18T16:31:25Z) - GestureDiffuCLIP: Gesture Diffusion Model with CLIP Latents [3.229105662984031]
GestureDiffuCLIP is a neural network framework for synthesizing realistic, stylized co-speech gestures with flexible style control.
Our system learns a latent diffusion model to generate high-quality gestures and infuses the CLIP representations of style into the generator.
Our system can be extended to allow fine-grained style control of individual body parts.
arXiv Detail & Related papers (2023-03-26T03:35:46Z) - Audio-Driven Co-Speech Gesture Video Generation [92.15661971086746]
We define and study this challenging problem of audio-driven co-speech gesture video generation.
Our key insight is that the co-speech gestures can be decomposed into common motion patterns and subtle rhythmic dynamics.
We propose a novel framework, Audio-driveN Gesture vIdeo gEneration (ANGIE), to effectively capture the reusable co-speech gesture patterns.
arXiv Detail & Related papers (2022-12-05T15:28:22Z) - Text-driven Video Prediction [83.04845684117835]
We propose a new task called Text-driven Video Prediction (TVP)
Taking the first frame and text caption as inputs, this task aims to synthesize the following frames.
To investigate the capability of text in causal inference for progressive motion information, our TVP framework contains a Text Inference Module (TIM)
arXiv Detail & Related papers (2022-10-06T12:43:07Z) - Modeling Motion with Multi-Modal Features for Text-Based Video
Segmentation [56.41614987789537]
Text-based video segmentation aims to segment the target object in a video based on a describing sentence.
We propose a method to fuse and align appearance, motion, and linguistic features to achieve accurate segmentation.
arXiv Detail & Related papers (2022-04-06T02:42:33Z) - Freeform Body Motion Generation from Speech [53.50388964591343]
Body motion generation from speech is inherently difficult due to the non-deterministic mapping from speech to body motions.
We introduce a novel freeform motion generation model (FreeMo) by equipping a two-stream architecture.
Experiments demonstrate the superior performance against several baselines.
arXiv Detail & Related papers (2022-03-04T13:03:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.