A Theory of $θ$-Expectations
- URL: http://arxiv.org/abs/2507.20353v1
- Date: Sun, 27 Jul 2025 16:56:01 GMT
- Title: A Theory of $θ$-Expectations
- Authors: Qian Qi,
- Abstract summary: We develop a framework for a class of differential equations where the driver is a pointwise geometry.<n>The system's tractability is predicated on a global existence of a unique and globally globally.<n> Lipschitz maximizer map for the driver function.
- Score: 2.1756081703276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The canonical theory of stochastic calculus under ambiguity, founded on sub-additivity, is insensitive to non-convex uncertainty structures, leading to an identifiability impasse. This paper develops a mathematical framework for an identifiable calculus sensitive to non-convex geometry. We introduce the $\theta$-BSDE, a class of backward stochastic differential equations where the driver is determined by a pointwise maximization over a primitive, possibly non-convex, uncertainty set. The system's tractability is predicated not on convexity, but on a global analytic hypothesis: the existence of a unique and globally Lipschitz maximizer map for the driver function. Under this hypothesis, which carves out a tractable class of models, we establish well-posedness via a fixed-point argument. For a distinct, geometrically regular class of models, we prove a result of independent interest: under non-degeneracy conditions from Malliavin calculus, the maximizer is unique along any solution path, ensuring the model's internal consistency. We clarify the fundamental logical gap between this pathwise property and the global regularity required by our existence proof. The resulting valuation operator defines a dynamically consistent expectation, and we establish its connection to fully nonlinear PDEs via a Feynman-Kac formula.
Related papers
- A Mean-Field Theory of $Θ$-Expectations [2.1756081703276]
We develop a new class of calculus for such non-linear models.<n>Theta-Expectation is shown to be consistent with the axiom of subaddivity.
arXiv Detail & Related papers (2025-07-30T11:08:56Z) - Neural Brownian Motion [2.1756081703276]
This paper introduces the Neural-Brownian Motion (NBM), a new class of processes for modeling dynamics under learned uncertainty.<n>The volatility function $nu_theta$ is not postulated a priori but is implicitly defined by the constraint $g_theta(t, M_t, nu_theta(t, M_t)) = 0.<n>The character of this measure whether pessimistic or optimistic is endogenously determined by the learned $theta, providing a rigorous foundation for models where the attitude towards uncertainty is a discoverable feature.
arXiv Detail & Related papers (2025-07-19T06:09:52Z) - Neural Expectation Operators [2.1756081703276]
This paper introduces textbfMeasure Learning, a paradigm for modeling ambiguity via non-linear expectations.<n>We define Neural Expectation Operators as solutions to Backward Differential Equations (BSDEs) whose drivers are parameterized by neural networks.<n>We provide constructive methods for enforcing key axiomatic properties, such as convexity, by architectural design.
arXiv Detail & Related papers (2025-07-13T06:19:28Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - Score-based generative models are provably robust: an uncertainty quantification perspective [4.396860522241307]
We show that score-based generative models (SGMs) are provably robust to the multiple sources of error in practical implementation.
Our primary tool is the Wasserstein uncertainty propagation (WUP) theorem.
We show how errors due to (a) finite sample approximation, (b) early stopping, (c) score-matching objective choice, (d) score function parametrization, and (e) reference distribution choice, impact the quality of the generative model.
arXiv Detail & Related papers (2024-05-24T17:50:17Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Convergence of Adam Under Relaxed Assumptions [72.24779199744954]
We show that Adam converges to $epsilon$-stationary points with $O(epsilon-4)$ gradient complexity under far more realistic conditions.
We also propose a variance-reduced version of Adam with an accelerated gradient complexity of $O(epsilon-3)$.
arXiv Detail & Related papers (2023-04-27T06:27:37Z) - Dynamical chaos in nonlinear Schr\"odinger models with subquadratic
power nonlinearity [137.6408511310322]
We deal with a class of nonlinear Schr"odinger lattices with random potential and subquadratic power nonlinearity.
We show that the spreading process is subdiffusive and has complex microscopic organization.
The limit of quadratic power nonlinearity is also discussed and shown to result in a delocalization border.
arXiv Detail & Related papers (2023-01-20T16:45:36Z) - Global Convergence of Over-parameterized Deep Equilibrium Models [52.65330015267245]
A deep equilibrium model (DEQ) is implicitly defined through an equilibrium point of an infinite-depth weight-tied model with an input-injection.
Instead of infinite computations, it solves an equilibrium point directly with root-finding and computes gradients with implicit differentiation.
We propose a novel probabilistic framework to overcome the technical difficulty in the non-asymptotic analysis of infinite-depth weight-tied models.
arXiv Detail & Related papers (2022-05-27T08:00:13Z) - Towards a Unified Framework for Uncertainty-aware Nonlinear Variable
Selection with Theoretical Guarantees [2.1506382989223782]
We develop a simple and unified framework for nonlinear variable selection that incorporates model uncertainty.
We show that the approach is generalizable even to non-differentiable models such as tree ensembles.
arXiv Detail & Related papers (2022-04-15T02:12:00Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
This paper establishes a precise high-dimensional theory for boosting on separable data.
Under a class of statistical models, we provide an exact analysis of the universality error of boosting.
We also explicitly pin down the relation between the boosting test error and the optimal Bayes error.
arXiv Detail & Related papers (2020-02-05T00:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.