Enhancing QoS in Edge Computing through Federated Layering Techniques: A Pathway to Resilient AI Lifelong Learning Systems
- URL: http://arxiv.org/abs/2507.20444v1
- Date: Mon, 28 Jul 2025 00:24:51 GMT
- Title: Enhancing QoS in Edge Computing through Federated Layering Techniques: A Pathway to Resilient AI Lifelong Learning Systems
- Authors: Chengzhuo Han,
- Abstract summary: This paper focuses on Quality of Service (QoS) in edge computing frameworks.<n>We propose a novel approach to enhance through the development of General Artificial Intelligence Lifelong Learning Systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of the rapidly evolving information technology landscape, marked by the advent of 6G communication networks, we face an increased data volume and complexity in network environments. This paper addresses these challenges by focusing on Quality of Service (QoS) in edge computing frameworks. We propose a novel approach to enhance QoS through the development of General Artificial Intelligence Lifelong Learning Systems, with a special emphasis on Federated Layering Techniques (FLT). Our work introduces a federated layering-based small model collaborative mechanism aimed at improving AI models' operational efficiency and response time in environments where resources are limited. This innovative method leverages the strengths of cloud and edge computing, incorporating a negotiation and debate mechanism among small AI models to enhance reasoning and decision-making processes. By integrating model layering techniques with privacy protection measures, our approach ensures the secure transmission of model parameters while maintaining high efficiency in learning and reasoning capabilities. The experimental results demonstrate that our strategy not only enhances learning efficiency and reasoning accuracy but also effectively protects the privacy of edge nodes. This presents a viable solution for achieving resilient large model lifelong learning systems, with a significant improvement in QoS for edge computing environments.
Related papers
- Edge Intelligence with Spiking Neural Networks [50.33340747216377]
Spiking Neural Networks (SNNs) offer low-power, event-driven computation on resource-constrained devices.<n>We present a systematic taxonomy of EdgeSNN foundations, encompassing neuron models, learning algorithms, and supporting hardware platforms.<n>Three representative practical considerations of EdgeSNN are discussed in depth: on-device inference using lightweight SNN models, resource-aware training and updating under non-stationary data conditions, and secure and privacy-preserving issues.
arXiv Detail & Related papers (2025-07-18T16:47:52Z) - AI Flow: Perspectives, Scenarios, and Approaches [51.38621621775711]
We introduce AI Flow, a framework that integrates cutting-edge IT and CT advancements.<n>First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters.<n>Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features.<n>Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow.
arXiv Detail & Related papers (2025-06-14T12:43:07Z) - Onboard Optimization and Learning: A Survey [10.511932152633253]
Onboard learning is a transformative approach in edge AI, enabling real-time data processing, decision-making, and adaptive model training directly on resource-constrained devices.<n>However, onboard learning faces challenges such as limited computational resources, high inference costs, and security vulnerabilities.<n>This survey explores techniques that optimize model efficiency, accelerate inference, and support collaborative learning across distributed devices.
arXiv Detail & Related papers (2025-05-07T07:47:14Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL) provides a privacy-preserving framework for training machine learning models on mobile edge devices.
Traditional FL algorithms, e.g., FedAvg, impose a heavy communication workload on these devices.
We propose a two-tier HFEL system, where edge devices are connected to edge servers and edge servers are interconnected through peer-to-peer (P2P) edge backhauls.
Our goal is to enhance the training efficiency of the HFEL system through strategic resource allocation and topology design.
arXiv Detail & Related papers (2024-09-29T01:48:04Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
Federated learning (FL) can be leveraged to improve learning efficiency and achieve privacy protection for AIGC.
We present FL-based techniques for empowering AIGC, and aim to enable users to generate diverse, personalized, and high-quality content.
arXiv Detail & Related papers (2023-07-14T04:13:11Z) - Incentive Mechanism Design for Resource Sharing in Collaborative Edge
Learning [106.51930957941433]
In 5G and Beyond networks, Artificial Intelligence applications are expected to be increasingly ubiquitous.
This necessitates a paradigm shift from the current cloud-centric model training approach to the Edge Computing based collaborative learning scheme known as edge learning.
arXiv Detail & Related papers (2020-05-31T12:45:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.