Conditional Diffusion Models for Global Precipitation Map Inpainting
- URL: http://arxiv.org/abs/2507.20478v1
- Date: Mon, 28 Jul 2025 02:26:36 GMT
- Title: Conditional Diffusion Models for Global Precipitation Map Inpainting
- Authors: Daiko Kishikawa, Yuka Muto, Shunji Kotsuki,
- Abstract summary: Incomplete satellite-based precipitation presents a significant challenge in global monitoring.<n>In this study, we formulate the completion of precipitation map as a video inpainting task.<n>We propose a machine learning approach based on conditional diffusion models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incomplete satellite-based precipitation presents a significant challenge in global monitoring. For example, the Global Satellite Mapping of Precipitation (GSMaP) from JAXA suffers from substantial missing regions due to the orbital characteristics of satellites that have microwave sensors, and its current interpolation methods often result in spatial discontinuities. In this study, we formulate the completion of the precipitation map as a video inpainting task and propose a machine learning approach based on conditional diffusion models. Our method employs a 3D U-Net with a 3D condition encoder to reconstruct complete precipitation maps by leveraging spatio-temporal information from infrared images, latitude-longitude grids, and physical time inputs. Training was carried out on ERA5 hourly precipitation data from 2020 to 2023. We generated a pseudo-GSMaP dataset by randomly applying GSMaP masks to ERA maps. Performance was evaluated for the calendar year 2024, and our approach produces more spatio-temporally consistent inpainted precipitation maps compared to conventional methods. These results indicate the potential to improve global precipitation monitoring using the conditional diffusion models.
Related papers
- Satellite Observations Guided Diffusion Model for Accurate Meteorological States at Arbitrary Resolution [48.34051432429767]
We propose a conditional diffusion model pre-trained on ERA5 reanalysis data with satellite observations (GridSat) as conditions.<n>During the training process, we propose to fuse the information from GridSat satellite observations into ERA5 maps via the attention mechanism.<n>In the sampling, we employed optimizable convolutional kernels to simulate the upscale process.
arXiv Detail & Related papers (2025-02-09T02:05:33Z) - Spatially Regularized Graph Attention Autoencoder Framework for Detecting Rainfall Extremes [2.273531916003657]
We introduce a novel Graph Attention Autoencoder (GAE) with spatial regularization to address the challenge of scalable anomaly detection in rainfall data across India from 1990 to 2015.
Our work paves the way for sophisticatedtemporal anomaly detection methodologies in climate science, contributing to better climate preparedness and response strategies.
arXiv Detail & Related papers (2024-11-12T12:24:48Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Global atmospheric data assimilation with multi-modal masked autoencoders [20.776143147372427]
"EarthNet" is a multi-modal foundation model for data assimilation.
It learns to predict a global gap-filled atmospheric state solely from satellite observations.
It produces a global 0.16 degree reanalysis dataset of 3D atmospheric temperature and humidity.
arXiv Detail & Related papers (2024-07-16T13:15:51Z) - Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.427841765899196]
We demonstrate the viability of score-based data assimilation in the context of realistically complex km-scale weather.<n>By incorporating observations from 40 weather stations, 10% lower RMSEs on left-out stations are attained.<n>It is a ripe time to explore extensions that combine increasingly ambitious regional state generators with an increasing set of in situ, ground-based, and satellite remote sensing data streams.
arXiv Detail & Related papers (2024-06-19T10:28:11Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.