SAND-Math: Using LLMs to Generate Novel, Difficult and Useful Mathematics Questions and Answers
- URL: http://arxiv.org/abs/2507.20527v2
- Date: Tue, 29 Jul 2025 17:02:27 GMT
- Title: SAND-Math: Using LLMs to Generate Novel, Difficult and Useful Mathematics Questions and Answers
- Authors: Chaitanya Manem, Pratik Prabhanjan Brahma, Prakamya Mishra, Zicheng Liu, Emad Barsoum,
- Abstract summary: We introduce textbfSAND-Math (Synthetic Augmented Novel and Difficult Mathematics problems and solutions)<n>We first generate high-quality problems from scratch and then systematically elevate their complexity via a new textbfDifficulty Hiking step.<n>We show our Difficulty Hiking process is highly effective: by increasing average problem difficulty from 5.02 to 5.98, this step lifts AIME25 performance from 46.38% to 49.23%.
- Score: 10.558690357768336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The demand for Large Language Models (LLMs) capable of sophisticated mathematical reasoning is growing across industries. However, the development of performant mathematical LLMs is critically bottlenecked by the scarcity of difficult, novel training data. We introduce \textbf{SAND-Math} (Synthetic Augmented Novel and Difficult Mathematics problems and solutions), a pipeline that addresses this by first generating high-quality problems from scratch and then systematically elevating their complexity via a new \textbf{Difficulty Hiking} step. We demonstrate the effectiveness of our approach through two key findings. First, augmenting a strong baseline with SAND-Math data significantly boosts performance, outperforming the next-best synthetic dataset by \textbf{$\uparrow$ 17.85 absolute points} on the AIME25 benchmark. Second, in a dedicated ablation study, we show our Difficulty Hiking process is highly effective: by increasing average problem difficulty from 5.02 to 5.98, this step lifts AIME25 performance from 46.38\% to 49.23\%. The full generation pipeline, final dataset, and a fine-tuned model form a practical and scalable toolkit for building more capable and efficient mathematical reasoning LLMs. SAND-Math dataset is released here: \href{https://huggingface.co/datasets/amd/SAND-MATH}{https://huggingface.co/datasets/amd/SAND-MATH}
Related papers
- Synthesis by Design: Controlled Data Generation via Structural Guidance [7.938713951512933]
We propose to extract structural information with generated problem-solving code from mathematical reasoning.<n>Our approach produces 39K problems with labeled intermediate steps and a 6.1K-problem benchmark of higher difficulty.<n>Results on our benchmark show that model performance declines as reasoning length increases.
arXiv Detail & Related papers (2025-06-09T11:38:23Z) - Challenging the Boundaries of Reasoning: An Olympiad-Level Math Benchmark for Large Language Models [86.45058529521258]
OlymMATH is a novel Olympiad-level mathematical benchmark designed to rigorously test the complex reasoning capabilities of LLMs.<n>OlymMATH features 200 meticulously curated problems, each manually verified and available in parallel English and Chinese versions.
arXiv Detail & Related papers (2025-03-27T11:20:17Z) - MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations [90.07275414500154]
We observe significant performance drops on MATH-P-Hard across various models.<n>We also raise concerns about a novel form of memorization where models blindly apply learned problem-solving skills.
arXiv Detail & Related papers (2025-02-10T13:31:46Z) - HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics [1.5716764919736026]
We introduce HARDMath, a dataset featuring challenging applied mathematics problems that require analytical approximation techniques.<n>Our framework auto-generates a large number of problems with solutions validated against numerical ground truths.<n>We evaluate both open- and closed-source LLMs on HARDMath-mini, a sub-sampled test set of 366 problems, as well as on 40 word problems formulated in applied science contexts.
arXiv Detail & Related papers (2024-10-13T20:09:41Z) - OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data [8.36384597713879]
The OpenMathInstruct-2 dataset consists of 14M question-solution pairs ($approx$ 600K unique questions)
Finetuning the textttLlama-3.1-8B-Base using OpenMathInstruct-2 outperforms textttLlama3.1-8B-Instruct on MATH by an absolute 15.9%.
To accelerate the open-source efforts, we release the code, the finetuned models, and the OpenMathInstruct-2 dataset under a commercially permissive license.
arXiv Detail & Related papers (2024-10-02T14:00:09Z) - InfinityMATH: A Scalable Instruction Tuning Dataset in Programmatic Mathematical Reasoning [13.728595670907136]
We introduce InfinityMATH, a scalable instruction tuning dataset for programmatic mathematical reasoning.
Fine-tuning experiments with open-source language and code models, such as Llama2 and CodeLlama, demonstrate the practical benefits of InfinityMATH.
arXiv Detail & Related papers (2024-08-09T08:18:20Z) - Skywork-Math: Data Scaling Laws for Mathematical Reasoning in Large Language Models -- The Story Goes On [55.449818944278526]
We introduce the Skywork-Math model series, supervised fine-tuned (SFT) on common 7B language models.
Skywork-Math 7B has achieved impressive accuracies of 51.2% on the competition-level MATH benchmark.
We provide several practical takeaways to enhance math reasoning abilities in LLMs for both research and industry applications.
arXiv Detail & Related papers (2024-07-11T09:56:51Z) - Lean Workbook: A large-scale Lean problem set formalized from natural language math problems [51.15420267178]
Large language models are not good at math theorem proving using formal languages like Lean.<n>A significant challenge in this area is the scarcity of training data available in these formal languages.<n>We propose a novel pipeline that iteratively generates and filters synthetic data to translate natural language mathematical problems into Lean 4 statements.
arXiv Detail & Related papers (2024-06-06T08:25:43Z) - JiuZhang3.0: Efficiently Improving Mathematical Reasoning by Training Small Data Synthesis Models [110.45794710162241]
Existing work either collects large-scale math-related texts for pre-training, or relies on stronger LLMs to synthesize massive math problems.
We propose an efficient way that trains a small LLM for math problem synthesis, to efficiently generate sufficient high-quality pre-training data.
We leverage it to synthesize 6 million math problems for pre-training our JiuZhang3.0 model, which only needs to invoke GPT-4 API 9.3k times and pre-train on 4.6B data.
arXiv Detail & Related papers (2024-05-23T09:43:19Z) - MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical
Reasoning [52.97768001837269]
We present a method to fine-tune open-source language models, enabling them to use code for modeling and deriving math equations.
We propose a method of generating novel and high-quality datasets with math problems and their code-based solutions.
This approach yields the MathCoder models, a family of models capable of generating code-based solutions for solving challenging math problems.
arXiv Detail & Related papers (2023-10-05T17:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.