Learning Phonetic Context-Dependent Viseme for Enhancing Speech-Driven 3D Facial Animation
- URL: http://arxiv.org/abs/2507.20568v1
- Date: Mon, 28 Jul 2025 07:04:50 GMT
- Title: Learning Phonetic Context-Dependent Viseme for Enhancing Speech-Driven 3D Facial Animation
- Authors: Hyung Kyu Kim, Hak Gu Kim,
- Abstract summary: Speech-driven 3D facial animation aims to generate realistic facial movements synchronized with audio.<n>Traditional methods primarily minimize reconstruction loss by aligning each frame with ground-truth.<n>We propose a novel phonetic context-aware loss, which explicitly models the influence of phonetic context on viseme transitions.
- Score: 8.75374562753977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speech-driven 3D facial animation aims to generate realistic facial movements synchronized with audio. Traditional methods primarily minimize reconstruction loss by aligning each frame with ground-truth. However, this frame-wise approach often fails to capture the continuity of facial motion, leading to jittery and unnatural outputs due to coarticulation. To address this, we propose a novel phonetic context-aware loss, which explicitly models the influence of phonetic context on viseme transitions. By incorporating a viseme coarticulation weight, we assign adaptive importance to facial movements based on their dynamic changes over time, ensuring smoother and perceptually consistent animations. Extensive experiments demonstrate that replacing the conventional reconstruction loss with ours improves both quantitative metrics and visual quality. It highlights the importance of explicitly modeling phonetic context-dependent visemes in synthesizing natural speech-driven 3D facial animation. Project page: https://cau-irislab.github.io/interspeech25/
Related papers
- Text2Lip: Progressive Lip-Synced Talking Face Generation from Text via Viseme-Guided Rendering [53.2204901422631]
Text2Lip is a viseme-centric framework that constructs an interpretable phonetic-visual bridge.<n>We show that Text2Lip outperforms existing approaches in semantic fidelity, visual realism, and modality robustness.
arXiv Detail & Related papers (2025-08-04T12:50:22Z) - GaussianSpeech: Audio-Driven Gaussian Avatars [76.10163891172192]
We introduce GaussianSpeech, a novel approach that synthesizes high-fidelity animation sequences of photo-realistic, personalized 3D human head avatars from spoken audio.<n>We propose a compact and efficient 3DGS-based avatar representation that generates expression-dependent color and leverages wrinkle- and perceptually-based losses to synthesize facial details.
arXiv Detail & Related papers (2024-11-27T18:54:08Z) - KMTalk: Speech-Driven 3D Facial Animation with Key Motion Embedding [19.15471840100407]
We present a novel approach for synthesizing 3D facial motions from audio sequences using key motion embeddings.
Our method integrates linguistic and data-driven priors through two modules: the linguistic-based key motion acquisition and the cross-modal motion completion.
The latter extends key motions into a full sequence of 3D talking faces guided by audio features, improving temporal coherence and audio-visual consistency.
arXiv Detail & Related papers (2024-09-02T09:41:24Z) - Mimic: Speaking Style Disentanglement for Speech-Driven 3D Facial
Animation [41.489700112318864]
Speech-driven 3D facial animation aims to synthesize vivid facial animations that accurately synchronize with speech and match the unique speaking style.
We introduce an innovative speaking style disentanglement method, which enables arbitrary-subject speaking style encoding.
We also propose a novel framework called textbfMimic to learn disentangled representations of the speaking style and content from facial motions.
arXiv Detail & Related papers (2023-12-18T01:49:42Z) - Speech2Lip: High-fidelity Speech to Lip Generation by Learning from a
Short Video [91.92782707888618]
We present a decomposition-composition framework named Speech to Lip (Speech2Lip) that disentangles speech-sensitive and speech-insensitive motion/appearance.
We show that our model can be trained by a video of just a few minutes in length and achieve state-of-the-art performance in both visual quality and speech-visual synchronization.
arXiv Detail & Related papers (2023-09-09T14:52:39Z) - DF-3DFace: One-to-Many Speech Synchronized 3D Face Animation with
Diffusion [68.85904927374165]
We propose DF-3DFace, a diffusion-driven speech-to-3D face mesh synthesis.
It captures the complex one-to-many relationships between speech and 3D face based on diffusion.
It simultaneously achieves more realistic facial animation than the state-of-the-art methods.
arXiv Detail & Related papers (2023-08-23T04:14:55Z) - Speech-Driven 3D Face Animation with Composite and Regional Facial
Movements [30.348768852726295]
Speech-driven 3D face animation poses significant challenges due to the intricacy and variability inherent in human facial movements.
This paper emphasizes the importance of considering both the composite and regional natures of facial movements in speech-driven 3D face animation.
arXiv Detail & Related papers (2023-08-10T08:42:20Z) - Audio-Driven Talking Face Generation with Diverse yet Realistic Facial
Animations [61.65012981435094]
DIRFA is a novel method that can generate talking faces with diverse yet realistic facial animations from the same driving audio.
To accommodate fair variation of plausible facial animations for the same audio, we design a transformer-based probabilistic mapping network.
We show that DIRFA can generate talking faces with realistic facial animations effectively.
arXiv Detail & Related papers (2023-04-18T12:36:15Z) - CodeTalker: Speech-Driven 3D Facial Animation with Discrete Motion Prior [27.989344587876964]
Speech-driven 3D facial animation has been widely studied, yet there is still a gap to achieving realism and vividness.
We propose to cast speech-driven facial animation as a code query task in a finite proxy space of the learned codebook.
We demonstrate that our approach outperforms current state-of-the-art methods both qualitatively and quantitatively.
arXiv Detail & Related papers (2023-01-06T05:04:32Z) - Imitator: Personalized Speech-driven 3D Facial Animation [63.57811510502906]
State-of-the-art methods deform the face topology of the target actor to sync the input audio without considering the identity-specific speaking style and facial idiosyncrasies of the target actor.
We present Imitator, a speech-driven facial expression synthesis method, which learns identity-specific details from a short input video.
We show that our approach produces temporally coherent facial expressions from input audio while preserving the speaking style of the target actors.
arXiv Detail & Related papers (2022-12-30T19:00:02Z) - A Novel Speech-Driven Lip-Sync Model with CNN and LSTM [12.747541089354538]
We present a combined deep neural network of one-dimensional convolutions and LSTM to generate displacement of a 3D template face model from variable-length speech input.
In order to enhance the robustness of the network to different sound signals, we adapt a trained speech recognition model to extract speech feature.
We show that our model is able to generate smooth and natural lip movements synchronized with speech.
arXiv Detail & Related papers (2022-05-02T13:57:50Z) - MeshTalk: 3D Face Animation from Speech using Cross-Modality
Disentanglement [142.9900055577252]
We propose a generic audio-driven facial animation approach that achieves highly realistic motion synthesis results for the entire face.
Our approach ensures highly accurate lip motion, while also plausible animation of the parts of the face that are uncorrelated to the audio signal, such as eye blinks and eye brow motion.
arXiv Detail & Related papers (2021-04-16T17:05:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.