When Scale Meets Diversity: Evaluating Language Models on Fine-Grained Multilingual Claim Verification
- URL: http://arxiv.org/abs/2507.20700v1
- Date: Mon, 28 Jul 2025 10:49:04 GMT
- Title: When Scale Meets Diversity: Evaluating Language Models on Fine-Grained Multilingual Claim Verification
- Authors: Hanna Shcharbakova, Tatiana Anikina, Natalia Skachkova, Josef van Genabith,
- Abstract summary: Large language models have remarkable capabilities across many NLP tasks, but their effectiveness for multilingual claim verification with nuanced classification schemes remains understudied.<n>We evaluate five state-of-the-art language models on the X-Fact dataset, which spans 25 languages with seven distinct veracity categories.<n>Surprisingly, we find that XLM-R substantially outperforms all tested LLMs, achieving 57.7% macro-F1 compared to the best LLM performance of 16.9%.
- Score: 14.187153195380668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid spread of multilingual misinformation requires robust automated fact verification systems capable of handling fine-grained veracity assessments across diverse languages. While large language models have shown remarkable capabilities across many NLP tasks, their effectiveness for multilingual claim verification with nuanced classification schemes remains understudied. We conduct a comprehensive evaluation of five state-of-the-art language models on the X-Fact dataset, which spans 25 languages with seven distinct veracity categories. Our experiments compare small language models (encoder-based XLM-R and mT5) with recent decoder-only LLMs (Llama 3.1, Qwen 2.5, Mistral Nemo) using both prompting and fine-tuning approaches. Surprisingly, we find that XLM-R (270M parameters) substantially outperforms all tested LLMs (7-12B parameters), achieving 57.7% macro-F1 compared to the best LLM performance of 16.9%. This represents a 15.8% improvement over the previous state-of-the-art (41.9%), establishing new performance benchmarks for multilingual fact verification. Our analysis reveals problematic patterns in LLM behavior, including systematic difficulties in leveraging evidence and pronounced biases toward frequent categories in imbalanced data settings. These findings suggest that for fine-grained multilingual fact verification, smaller specialized models may be more effective than general-purpose large models, with important implications for practical deployment of fact-checking systems.
Related papers
- Facts are Harder Than Opinions -- A Multilingual, Comparative Analysis of LLM-Based Fact-Checking Reliability [1.1135113962297134]
This paper introduces a novel, dynamically data set that includes 61,514 claims in multiple languages and topics, extending existing datasets up to 2024.<n>We evaluate five prominent Large Language Models (LLMs), including GPT-4o, GPT-3.5 Turbo, LLaMA 3.1, and Mixtral 8x7B.<n>Across all models, factual-sounding claims are misclassified more often than opinions, revealing a key vulnerability.
arXiv Detail & Related papers (2025-06-04T07:47:21Z) - Cross-Lingual Pitfalls: Automatic Probing Cross-Lingual Weakness of Multilingual Large Language Models [55.14276067678253]
This paper introduces a novel methodology for efficiently identifying inherent cross-lingual weaknesses in Large Language Models (LLMs)<n>We construct a new dataset of over 6,000 bilingual pairs across 16 languages using this methodology, demonstrating its effectiveness in revealing weaknesses even in state-of-the-art models.<n>Further experiments investigate the relationship between linguistic similarity and cross-lingual weaknesses, revealing that linguistically related languages share similar performance patterns.
arXiv Detail & Related papers (2025-05-24T12:31:27Z) - Out of Style: RAG's Fragility to Linguistic Variation [29.59506089890902]
User queries exhibit greater linguistic variations and can trigger cascading errors across interdependent RAG components.<n>We analyze how varying four linguistic dimensions (formality, readability, politeness, and grammatical correctness) impact RAG performance.
arXiv Detail & Related papers (2025-04-11T03:30:26Z) - M-Prometheus: A Suite of Open Multilingual LLM Judges [64.22940792713713]
We introduce M-Prometheus, a suite of open-weight LLM judges that can provide both direct assessment and pairwise comparison feedback on multilingual outputs.<n>M-Prometheus models outperform state-of-the-art open LLM judges on multilingual reward benchmarks spanning more than 20 languages, as well as on literary machine translation (MT) evaluation covering 4 language pairs.
arXiv Detail & Related papers (2025-04-07T11:37:26Z) - Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following [51.18383180774354]
We introduce Multi-IF, a new benchmark designed to assess Large Language Models' proficiency in following multi-turn and multilingual instructions.
Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks.
languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities.
arXiv Detail & Related papers (2024-10-21T00:59:47Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
We propose a question alignment framework to bridge the gap between large language models' English and non-English performance.
Experiment results show it can boost multilingual performance across diverse reasoning scenarios, model families, and sizes.
We analyze representation space, generated response and data scales, and reveal how question translation training strengthens language alignment within LLMs.
arXiv Detail & Related papers (2024-05-02T14:49:50Z) - MAPLE: Multilingual Evaluation of Parameter Efficient Finetuning of Large Language Models [7.321459642283822]
Finetuning can improve the performance of language models without requiring massive resources and compute.
We finetune LLama-2-7B and Mistral-7B models on two synthetic multilingual instruction tuning datasets to determine its effect on model performance.
We find that PEFT of smaller open-source models sometimes bridges the gap between the performance of these models and the larger ones, however, English performance can take a hit.
arXiv Detail & Related papers (2024-01-15T11:06:43Z) - MEGAVERSE: Benchmarking Large Language Models Across Languages, Modalities, Models and Tasks [12.665447518524187]
This study aims to perform a thorough evaluation of the non-English capabilities of SoTA LLMs by comparing them on the same set of multilingual datasets.
Our benchmark comprises 22 datasets covering 83 languages, including low-resource African languages.
We also perform a study on data contamination and find that several models are likely to be contaminated with multilingual evaluation benchmarks.
arXiv Detail & Related papers (2023-11-13T16:45:37Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
This paper pioneers exploring and training powerful Multilingual Math Reasoning (xMR) LLMs.
We construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
By utilizing translation, we construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
arXiv Detail & Related papers (2023-10-31T08:09:20Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
Abstractive summarization has enjoyed renewed interest in recent years, thanks to pre-trained language models and the availability of large-scale datasets.
Despite promising results, current models still suffer from generating factually inconsistent summaries.
We leverage factual consistency evaluation models to improve multilingual summarization.
arXiv Detail & Related papers (2022-12-20T19:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.