Three-boson scattering hypervolume for a nonzero orbital angular momentum
- URL: http://arxiv.org/abs/2507.20787v1
- Date: Mon, 28 Jul 2025 12:57:34 GMT
- Title: Three-boson scattering hypervolume for a nonzero orbital angular momentum
- Authors: Pui In Ip, Shina Tan,
- Abstract summary: We analyze the zero energy collision of three identical bosons in the same internal state with total angular momentum $L=2$.<n>We derive two expansions of the wave function when three bosons are far apart or a pair of bosons and the third boson are far apart.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the zero energy collision of three identical bosons in the same internal state with total orbital angular momentum $L=2$, assuming short range interactions. By solving the Schr\"odinger equation asymptotically, we derive two expansions of the wave function when three bosons are far apart or a pair of bosons and the third boson are far apart. The scattering hypervolume $D$ is defined for this collision. Unlike the scattering hypervolume defined by one of us in 2008, whose dimension is length to the fourth power, the dimension of $D$ studied in the present paper is length to the eighth power. We then derive the expression of $D$ when the interaction potentials are weak, using the Born's expansion. We also calculate the energy shift of such three bosons with three different momenta $\hbar \mathbf{k_{1}}$, $\hbar\mathbf{k_{2}}$ and $\hbar\mathbf{k_{3}}$ in a large periodic box. The obtained energy shift depends on $D^{(0)}/\Omega^{2}$ and $D/\Omega^{2}$, where $D^{(0)}$ is the three-body scattering hypervolume defined for the three-body $L=0$ collision and $\Omega$ is the volume of the periodic box. We also calculate the contribution of $D$ to the three-body T-matrix element for low-energy collisions. We then calculate the shift of the energy and the three-body recombination rate due to $D^{(0)}$ and $D$ in the dilute homogeneous Bose gas. The contribution to the three-body recombination rate constant from $D$ is proportional to $T^2$ if the temperature $T$ is much larger than the quantum degeneracy temperature but still much lower than the temperature scale at which the thermal de Broglie wave length becomes comparable to the physical range of interaction.
Related papers
- Three-body scattering hypervolume of two-component fermions in three dimensions [5.735035463793008]
We study the zero-energy collision of three fermions, two of which are in the spin-down ($downarrow$) state and one of which is in the spin-up ($uparrow$) state.<n>We compute the $T$-matrix element for three fermions colliding at low energy in terms of $D$ in the absence of two-body interactions.<n>We also analyze the energy shift of three two-component fermions in a large periodic cube due toD$ and generalize this result to the many-fermion system.
arXiv Detail & Related papers (2025-01-09T12:33:43Z) - Vacuum Force and Confinement [65.268245109828]
We show that confinement of quarks and gluons can be explained by their interaction with the vacuum Abelian gauge field $A_sfvac$.
arXiv Detail & Related papers (2024-02-09T13:42:34Z) - Three-body scattering area for particles with infinite or zero scattering length in two dimensions [3.345575993695074]
We find that the ground state energy per particle of a zero-temperature dilute Bose gas with finite-range interactions is approximately $frachbar2 D 6mrho2$.
We derive a formula for the three-body recombination rate constant of the many-boson system in terms of the imaginary part of $D$.
arXiv Detail & Related papers (2024-02-03T16:24:40Z) - Quantum connection, charges and virtual particles [65.268245109828]
A quantum bundle $L_hbar$ is endowed with a connection $A_hbar$ and its sections are standard wave functions $psi$ obeying the Schr"odinger equation.
We will lift the bundles $L_Cpm$ and connection $A_hbar$ on them to the relativistic phase space $T*R3,1$ and couple them to the Dirac spinor bundle describing both particles and antiparticles.
arXiv Detail & Related papers (2023-10-10T10:27:09Z) - Rigorous derivation of the Efimov effect in a simple model [68.8204255655161]
We consider a system of three identical bosons in $mathbbR3$ with two-body zero-range interactions and a three-body hard-core repulsion of a given radius $a>0$.
arXiv Detail & Related papers (2023-06-21T10:11:28Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - The three-body scattering hypervolume of identical fermions in one
dimension [8.35070936044077]
We study the zero-energy collision of three identical spin-polarized fermions with short-range interactions in one dimension.
We derive the expansions of the three-body wave function when the three fermions are far apart or one pair and the third fermion are far apart.
We calculate the shifts of energy and of pressure of spin-polarized one-dimensional Fermi gases due to a nonzero $D_F$ and the three-body recombination rate in one dimension.
arXiv Detail & Related papers (2023-02-27T11:43:03Z) - On parametric resonance in the laser action [91.3755431537592]
We consider the selfconsistent semiclassical Maxwell--Schr"odinger system for the solid state laser.
We introduce the corresponding Poincar'e map $P$ and consider the differential $DP(Y0)$ at suitable stationary state $Y0$.
arXiv Detail & Related papers (2022-08-22T09:43:57Z) - Three-body recombination in a single-component Fermi gas with $p$-wave
interaction [2.6641834518599308]
We study the three-body recombination of identical fermionic atoms.
We show that the rate constant of three-body recombination into weakly bound $p$-wave dimers can be written as $alpha_rm rec propto v5/2R1/2 k_T4.
arXiv Detail & Related papers (2022-01-04T03:55:23Z) - Three-Body Scattering Hypervolume of Particles with Unequal Masses [8.35070936044077]
We analyze the collision of three particles with arbitrary mass ratio at zero collision energy.
We generalize the three-body scattering hypervolume $D$ first defined for identical bosons in 2008.
We derive some properties of a two-component Bose gas with two-body scattering lengths.
arXiv Detail & Related papers (2021-03-25T14:29:44Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.