The Importance of Facial Features in Vision-based Sign Language Recognition: Eyes, Mouth or Full Face?
- URL: http://arxiv.org/abs/2507.20884v2
- Date: Tue, 29 Jul 2025 18:27:34 GMT
- Title: The Importance of Facial Features in Vision-based Sign Language Recognition: Eyes, Mouth or Full Face?
- Authors: Dinh Nam Pham, Eleftherios Avramidis,
- Abstract summary: We show that the mouth is the most important non-manual facial feature, significantly improving accuracy.<n>Our findings highlight the necessity of incorporating facial features in automatic sign language recognition.
- Score: 5.92177182003275
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Non-manual facial features play a crucial role in sign language communication, yet their importance in automatic sign language recognition (ASLR) remains underexplored. While prior studies have shown that incorporating facial features can improve recognition, related work often relies on hand-crafted feature extraction and fails to go beyond the comparison of manual features versus the combination of manual and facial features. In this work, we systematically investigate the contribution of distinct facial regionseyes, mouth, and full faceusing two different deep learning models (a CNN-based model and a transformer-based model) trained on an SLR dataset of isolated signs with randomly selected classes. Through quantitative performance and qualitative saliency map evaluation, we reveal that the mouth is the most important non-manual facial feature, significantly improving accuracy. Our findings highlight the necessity of incorporating facial features in ASLR.
Related papers
- Face-LLaVA: Facial Expression and Attribute Understanding through Instruction Tuning [5.178801281905521]
We propose Face-LLaVA, a large language model for face-centered, in-context learning, including facial expression and attribute recognition.<n>We first developed FaceInstruct-1M, a face-centered database for instruction tuning MLLMs for face processing.<n>We then developed a novel face-specific visual encoder powered by Face-Region Guided Cross-Attention.
arXiv Detail & Related papers (2025-04-09T18:26:07Z) - CLIP Unreasonable Potential in Single-Shot Face Recognition [0.0]
Face recognition is a core task in computer vision designed to identify and authenticate individuals by analyzing facial patterns and features.
Recent Contrastive Language Image Pretraining (CLIP) a model developed by OpenAI has shown promising advancements.
CLIP links natural language processing with vision tasks allowing it to generalize across modalities.
arXiv Detail & Related papers (2024-11-19T08:23:52Z) - LAFS: Landmark-based Facial Self-supervised Learning for Face
Recognition [37.4550614524874]
We focus on learning facial representations that can be adapted to train effective face recognition models.
We explore the learning strategy of unlabeled facial images through self-supervised pretraining.
Our method achieves significant improvement over the state-of-the-art on multiple face recognition benchmarks.
arXiv Detail & Related papers (2024-03-13T01:07:55Z) - Contrastive Learning of Person-independent Representations for Facial
Action Unit Detection [70.60587475492065]
We formulate the self-supervised AU representation learning signals in two-fold.
We contrast learn the AU representation within a video clip and devise a cross-identity reconstruction mechanism to learn the person-independent representations.
Our method outperforms other contrastive learning methods and significantly closes the performance gap between the self-supervised and supervised AU detection approaches.
arXiv Detail & Related papers (2024-03-06T01:49:28Z) - Self-Supervised Facial Representation Learning with Facial Region
Awareness [13.06996608324306]
Self-supervised pre-training has been proven to be effective in learning transferable representations that benefit various visual tasks.
Recent efforts toward this goal are limited to treating each face image as a whole.
We propose a novel self-supervised facial representation learning framework to learn consistent global and local facial representations.
arXiv Detail & Related papers (2024-03-04T15:48:56Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
We propose Contrastive Inhibitory Adaptati On (CIAO), a mechanism that adapts the last layer of facial encoders to depict specific affective characteristics on different datasets.
CIAO presents an improvement in facial expression recognition performance over six different datasets with very unique affective representations.
arXiv Detail & Related papers (2022-08-10T15:46:05Z) - I Only Have Eyes for You: The Impact of Masks On Convolutional-Based
Facial Expression Recognition [78.07239208222599]
We evaluate how the recently proposed FaceChannel adapts towards recognizing facial expressions from persons with masks.
We also perform specific feature-level visualization to demonstrate how the inherent capabilities of the FaceChannel to learn and combine facial features change when in a constrained social interaction scenario.
arXiv Detail & Related papers (2021-04-16T20:03:30Z) - Pre-training strategies and datasets for facial representation learning [58.8289362536262]
We show how to find a universal face representation that can be adapted to several facial analysis tasks and datasets.
We systematically investigate two ways of large-scale representation learning applied to faces: supervised and unsupervised pre-training.
Our main two findings are: Unsupervised pre-training on completely in-the-wild, uncurated data provides consistent and, in some cases, significant accuracy improvements.
arXiv Detail & Related papers (2021-03-30T17:57:25Z) - AU-Expression Knowledge Constrained Representation Learning for Facial
Expression Recognition [79.8779790682205]
We propose an AU-Expression Knowledge Constrained Representation Learning (AUE-CRL) framework to learn the AU representations without AU annotations and adaptively use representations to facilitate facial expression recognition.
We conduct experiments on the challenging uncontrolled datasets to demonstrate the superiority of the proposed framework over current state-of-the-art methods.
arXiv Detail & Related papers (2020-12-29T03:42:04Z) - Dual-Attention GAN for Large-Pose Face Frontalization [59.689836951934694]
We present a novel Dual-Attention Generative Adversarial Network (DA-GAN) for photo-realistic face frontalization.
Specifically, a self-attention-based generator is introduced to integrate local features with their long-range dependencies.
A novel face-attention-based discriminator is applied to emphasize local features of face regions.
arXiv Detail & Related papers (2020-02-17T20:00:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.