RIS-LAD: A Benchmark and Model for Referring Low-Altitude Drone Image Segmentation
- URL: http://arxiv.org/abs/2507.20920v1
- Date: Mon, 28 Jul 2025 15:21:03 GMT
- Title: RIS-LAD: A Benchmark and Model for Referring Low-Altitude Drone Image Segmentation
- Authors: Kai Ye, YingShi Luan, Zhudi Chen, Guangyue Meng, Pingyang Dai, Liujuan Cao,
- Abstract summary: Referring ImageHide (RIS) aims to segment specific objects based on natural language descriptions.<n>Existing datasets and methods are typically designed for high-altitude and static-view imagery.<n>We present RIS-LAD, the first fine-grained RIS benchmark tailored for Low-Altitude Drone (LAD) scenarios.
- Score: 14.203806360052567
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Referring Image Segmentation (RIS), which aims to segment specific objects based on natural language descriptions, plays an essential role in vision-language understanding. Despite its progress in remote sensing applications, RIS in Low-Altitude Drone (LAD) scenarios remains underexplored. Existing datasets and methods are typically designed for high-altitude and static-view imagery. They struggle to handle the unique characteristics of LAD views, such as diverse viewpoints and high object density. To fill this gap, we present RIS-LAD, the first fine-grained RIS benchmark tailored for LAD scenarios. This dataset comprises 13,871 carefully annotated image-text-mask triplets collected from realistic drone footage, with a focus on small, cluttered, and multi-viewpoint scenes. It highlights new challenges absent in previous benchmarks, such as category drift caused by tiny objects and object drift under crowded same-class objects. To tackle these issues, we propose the Semantic-Aware Adaptive Reasoning Network (SAARN). Rather than uniformly injecting all linguistic features, SAARN decomposes and routes semantic information to different stages of the network. Specifically, the Category-Dominated Linguistic Enhancement (CDLE) aligns visual features with object categories during early encoding, while the Adaptive Reasoning Fusion Module (ARFM) dynamically selects semantic cues across scales to improve reasoning in complex scenes. The experimental evaluation reveals that RIS-LAD presents substantial challenges to state-of-the-art RIS algorithms, and also demonstrates the effectiveness of our proposed model in addressing these challenges. The dataset and code will be publicly released soon at: https://github.com/AHideoKuzeA/RIS-LAD/.
Related papers
- DeRIS: Decoupling Perception and Cognition for Enhanced Referring Image Segmentation through Loopback Synergy [15.729826041347144]
We propose DeRIS, a novel framework that decomposes RIS into two key components: perception and cognition.<n>Our findings reveal that the predominant limitation lies not in perceptual deficiencies, but in the insufficient multi-modal cognitive capacity of current models.<n>We introduce a simple non-referent sample conversion data augmentation to address the long-tail distribution issue related to target existence judgement.
arXiv Detail & Related papers (2025-07-02T14:14:35Z) - PanSR: An Object-Centric Mask Transformer for Panoptic Segmentation [9.713215680147583]
Panoptic segmentation is a fundamental task in computer vision and a crucial component for perception in autonomous vehicles.<n>Recent mask-transformer-based methods achieve impressive performance on standard benchmarks but face significant challenges with small objects, crowded scenes and scenes exhibiting a wide range of object scales.<n>We propose a novel method for panoptic segmentation PanSR. PanSR effectively mitigates instance merging, enhances small-object detection and increases performance in crowded scenes, delivering a notable +3.4 PQ improvement over state-of-the-art on the challenging LaRS benchmark, while reaching state-of-the-art performance on Cityscapes.
arXiv Detail & Related papers (2024-12-13T22:12:37Z) - Cross-Modal Bidirectional Interaction Model for Referring Remote Sensing Image Segmentation [50.433911327489554]
The goal of referring remote sensing image segmentation (RRSIS) is to generate a pixel-level mask of the target object identified by the referring expression.<n>To address the aforementioned challenges, a novel RRSIS framework is proposed, termed the cross-modal bidirectional interaction model (CroBIM)<n>To further forster the research of RRSIS, we also construct RISBench, a new large-scale benchmark dataset comprising 52,472 image-language-label triplets.
arXiv Detail & Related papers (2024-10-11T08:28:04Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Aligning and Prompting Everything All at Once for Universal Visual
Perception [79.96124061108728]
APE is a universal visual perception model for aligning and prompting everything all at once in an image to perform diverse tasks.
APE advances the convergence of detection and grounding by reformulating language-guided grounding as open-vocabulary detection.
Experiments on over 160 datasets demonstrate that APE outperforms state-of-the-art models.
arXiv Detail & Related papers (2023-12-04T18:59:50Z) - RRSIS: Referring Remote Sensing Image Segmentation [25.538406069768662]
Localizing desired objects from remote sensing images is of great use in practical applications.
Referring image segmentation, which aims at segmenting out the objects to which a given expression refers, has been extensively studied in natural images.
We introduce referring remote sensing image segmentation (RRSIS) to fill in this gap and make some insightful explorations.
arXiv Detail & Related papers (2023-06-14T16:40:19Z) - Robust Saliency-Aware Distillation for Few-shot Fine-grained Visual
Recognition [57.08108545219043]
Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision.
Existing literature addresses this challenge by employing local-based representation approaches.
This article proposes a novel model, Robust Saliency-aware Distillation (RSaD), for few-shot fine-grained visual recognition.
arXiv Detail & Related papers (2023-05-12T00:13:17Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
Aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance.
We propose Adaptive Focus Framework (AF$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations.
AF$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.
arXiv Detail & Related papers (2022-02-18T10:14:45Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.