Predicting Cognition from fMRI:A Comparative Study of Graph, Transformer, and Kernel Models Across Task and Rest Conditions
- URL: http://arxiv.org/abs/2507.21016v1
- Date: Mon, 28 Jul 2025 17:29:22 GMT
- Title: Predicting Cognition from fMRI:A Comparative Study of Graph, Transformer, and Kernel Models Across Task and Rest Conditions
- Authors: Jagruti Patel, Mikkel Schöttner, Thomas A. W. Bolton, Patric Hagmann,
- Abstract summary: This study systematically benchmarked classical machine learning (KRR) and advanced deep learning (DL) models for cognitive prediction.<n>Our results revealed that task-based fMRI, eliciting neural responses directly tied to cognition, outperformed RS fMRI in predicting cognitive behavior.
- Score: 1.0832932170181544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting cognition from neuroimaging data in healthy individuals offers insights into the neural mechanisms underlying cognitive abilities, with potential applications in precision medicine and early detection of neurological and psychiatric conditions. This study systematically benchmarked classical machine learning (Kernel Ridge Regression (KRR)) and advanced deep learning (DL) models (Graph Neural Networks (GNN) and Transformer-GNN (TGNN)) for cognitive prediction using Resting-state (RS), Working Memory, and Language task fMRI data from the Human Connectome Project Young Adult dataset. Our results, based on R2 scores, Pearson correlation coefficient, and mean absolute error, revealed that task-based fMRI, eliciting neural responses directly tied to cognition, outperformed RS fMRI in predicting cognitive behavior. Among the methods compared, a GNN combining structural connectivity (SC) and functional connectivity (FC) consistently achieved the highest performance across all fMRI modalities; however, its advantage over KRR using FC alone was not statistically significant. The TGNN, designed to model temporal dynamics with SC as a prior, performed competitively with FC-based approaches for task-fMRI but struggled with RS data, where its performance aligned with the lower-performing GNN that directly used fMRI time-series data as node features. These findings emphasize the importance of selecting appropriate model architectures and feature representations to fully leverage the spatial and temporal richness of neuroimaging data. This study highlights the potential of multimodal graph-aware DL models to combine SC and FC for cognitive prediction, as well as the promise of Transformer-based approaches for capturing temporal dynamics. By providing a comprehensive comparison of models, this work serves as a guide for advancing brain-behavior modeling using fMRI, SC and DL.
Related papers
- Towards a general-purpose foundation model for fMRI analysis [58.06455456423138]
We introduce NeuroSTORM, a framework that learns from 4D fMRI volumes and enables efficient knowledge transfer across diverse applications.<n>NeuroSTORM is pre-trained on 28.65 million fMRI frames (>9,000 hours) from over 50,000 subjects across multiple centers and ages 5 to 100.<n>It outperforms existing methods across five tasks: age/gender prediction, phenotype prediction, disease diagnosis, fMRI-to-image retrieval, and task-based fMRI.
arXiv Detail & Related papers (2025-06-11T23:51:01Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
Deep neural networks trained on Functional Connectivity (FC) networks extracted from functional Magnetic Resonance Imaging (fMRI) data have gained popularity.
Recent research on the application of Graph Neural Network (GNN) to FC suggests that exploiting the time-varying properties of the FC could significantly improve the accuracy and interpretability of the model prediction.
High cost of acquiring high-quality fMRI data and corresponding labels poses a hurdle to their application in real-world settings.
We propose a generative SSL approach that is tailored to effectively harnesstemporal information within dynamic FC.
arXiv Detail & Related papers (2023-12-04T16:14:43Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Temporal Dynamic Synchronous Functional Brain Network for Schizophrenia
Diagnosis and Lateralization Analysis [8.280225660612862]
The study was validated on COBRE and UCLA datasets and achieved 83.62% and 89.71% average accuracies.
Interestingly, this study showed that the lower order perceptual system and higher order network regions in the left hemisphere are more severely dysfunctional than in the right hemisphere in SZ.
arXiv Detail & Related papers (2023-03-31T02:54:01Z) - Reconstructing high-order sequence features of dynamic functional
connectivity networks based on diversified covert attention patterns for
Alzheimer's disease classification [22.57052592437276]
We introduce self-attention mechanism, a core module of Transformers, to model diversified attention patterns and apply these patterns to reconstruct high-order sequence features of dFCNs.
We propose a CRN method based on diversified attention patterns, DCA-CRN, which combines the advantages of CRNs capturing local in-temporal-temporal features and sequence change patterns, as well as Transformers in learning global and high-order correlation features.
arXiv Detail & Related papers (2022-11-19T02:13:21Z) - Learning Task-Aware Effective Brain Connectivity for fMRI Analysis with
Graph Neural Networks [28.460737693330245]
We propose TBDS, an end-to-end framework based on underlineTask-aware underlineBrain connectivity underlineDAG for fMRI analysis.
The key component of TBDS is the brain network generator which adopts a DAG learning approach to transform the raw time-series into task-aware brain connectivities.
Comprehensive experiments on two fMRI datasets demonstrate the efficacy of TBDS.
arXiv Detail & Related papers (2022-11-01T03:59:54Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - GATE: Graph CCA for Temporal SElf-supervised Learning for
Label-efficient fMRI Analysis [25.4835612758922]
In population graph-based disease analysis, graph convolutional neural networks (GCNs) have achieved remarkable success.
We propose a novel and theory-driven self-supervised learning framework on GCNs, namely Graph CCA for Temporal self-supervised learning on fMRI analysis GATE.
Our method is tested on two independent fMRI datasets, demonstrating superior performance on autism and dementia diagnosis.
arXiv Detail & Related papers (2022-03-17T02:23:30Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
We present a deep neural network method for learning a personal representation for individuals performing a self neuromodulation task, guided by functional MRI (fMRI)
The representation is learned by a self-supervised recurrent neural network, that predicts the Amygdala activity in the next fMRI frame given recent fMRI frames and is conditioned on the learned individual representation.
arXiv Detail & Related papers (2021-12-06T10:16:54Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis [11.85489505372321]
We train a-temporal graph convolutional network (ST-GCN) on short sub-sequences of the BOLD time series to model the non-stationary nature of functional connectivity.
St-GCN is significantly more accurate than common approaches in predicting gender and age based on BOLD signals.
arXiv Detail & Related papers (2020-03-24T01:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.