MaPPO: Maximum a Posteriori Preference Optimization with Prior Knowledge
- URL: http://arxiv.org/abs/2507.21183v2
- Date: Fri, 01 Aug 2025 20:48:02 GMT
- Title: MaPPO: Maximum a Posteriori Preference Optimization with Prior Knowledge
- Authors: Guangchen Lan, Sipeng Zhang, Tianle Wang, Yuwei Zhang, Daoan Zhang, Xinpeng Wei, Xiaoman Pan, Hongming Zhang, Dong-Jun Han, Christopher G. Brinton,
- Abstract summary: We propose Maximum a Posteriori Preference Optimization (MaPPO), a framework for learning from preferences.<n>MaPPO integrates prior reward estimates into a principled Maximum a Posteriori (MaP) objective.<n>MaPPO can be used as a plugin with consistent improvement on DPO variants.
- Score: 35.703451475662995
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the era of large language models (LLMs) on behalf of users unfolds, Preference Optimization (PO) methods have become a central approach to aligning LLMs with human preferences and improving performance. We propose Maximum a Posteriori Preference Optimization (MaPPO), a framework for learning from preferences that explicitly incorporates prior reward knowledge into the optimization objective. While existing methods such as Direct Preference Optimization (DPO) and its variants treat preference learning as a Maximum Likelihood Estimation (MLE) problem, MaPPO extends this paradigm by integrating prior reward estimates into a principled Maximum a Posteriori (MaP) objective. This not only generalizes DPO and its variants, but also enhances alignment by mitigating the oversimplified binary classification of responses. More importantly, MaPPO introduces no additional hyperparameter, and supports preference optimization in both offline and online settings. In addition, MaPPO can be used as a plugin with consistent improvement on DPO variants, including widely used SimPO, IPO, and CPO. Extensive empirical evaluations of different model sizes and model series on three standard benchmarks, including MT-Bench, AlpacaEval 2.0, and Arena-Hard, demonstrate consistent improvements in alignment performance without sacrificing computational efficiency.
Related papers
- AMoPO: Adaptive Multi-objective Preference Optimization without Reward Models and Reference Models [18.249363312256722]
AMoPO is a novel framework that achieves dynamic balance across preference dimensions.<n>We introduce the multi-objective optimization paradigm to use the dimension-aware generation metrics as implicit rewards.<n> Empirical results demonstrate that AMoPO outperforms state-of-the-art baselines by 28.5%.
arXiv Detail & Related papers (2025-06-08T14:31:06Z) - ASPO: Adaptive Sentence-Level Preference Optimization for Fine-Grained Multimodal Reasoning [14.034412856423529]
Direct Preference Optimization (DPO) has gained attention for its simplicity and computational efficiency in aligning large language models (LLMs)<n>Recent advancements have extended DPO to multimodal scenarios, achieving strong performance.<n>Traditional DPO relies on binary preference optimization, rewarding or penalizing entire responses without considering fine-grained segment correctness.<n>We propose Adaptive Sentence-level Preference Optimization (ASPO), which evaluates individual sentences for more precise preference optimization.
arXiv Detail & Related papers (2025-05-25T11:33:08Z) - A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.<n>Their alignment with human values remains critical for ensuring helpful and harmless deployments.<n>Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - FocalPO: Enhancing Preference Optimizing by Focusing on Correct Preference Rankings [40.605411087380226]
We introduce FocalPO, a DPO variant that prioritizes enhancing the model's understanding of pairs that it can already rank correctly.<n>Inspired by Focal Loss used in vision tasks, FocalPO achieves this by adding a modulating factor to dynamically scale DPO loss.
arXiv Detail & Related papers (2025-01-11T21:41:27Z) - MPPO: Multi Pair-wise Preference Optimization for LLMs with Arbitrary Negative Samples [22.521746860874305]
This study introduces the MPPO algorithm, which leverages the average likelihood of model responses to fit the reward function.<n>Through a comparison of Point-wise, Pair-wise, and List-wise implementations, we found that the Pair-wise approach achieves the best performance.<n> Experimental results demonstrate MPPO's outstanding performance across various benchmarks.
arXiv Detail & Related papers (2024-12-13T14:18:58Z) - AlphaDPO: Adaptive Reward Margin for Direct Preference Optimization [45.46582930202524]
$alpha$-DPO is an adaptive preference optimization algorithm for large language models.<n>It balances the policy model and the reference model to achieve personalized reward margins.<n>It consistently outperforms DPO and SimPO across various model settings.
arXiv Detail & Related papers (2024-10-14T04:29:57Z) - Accelerated Preference Optimization for Large Language Model Alignment [60.22606527763201]
Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal tool for aligning large language models (LLMs) with human preferences.
Direct Preference Optimization (DPO) formulates RLHF as a policy optimization problem without explicitly estimating the reward function.
We propose a general Accelerated Preference Optimization (APO) framework, which unifies many existing preference optimization algorithms.
arXiv Detail & Related papers (2024-10-08T18:51:01Z) - mDPO: Conditional Preference Optimization for Multimodal Large Language Models [52.607764280030196]
Direct preference optimization (DPO) has shown to be an effective method for large language model (LLM) alignment.
Recent works have attempted to apply DPO to multimodal scenarios but have found it challenging to achieve consistent improvement.
We propose mDPO, a multimodal DPO objective that prevents the over-prioritization of language-only preferences by also optimizing image preference.
arXiv Detail & Related papers (2024-06-17T17:59:58Z) - On Softmax Direct Preference Optimization for Recommendation [50.896117978746]
We propose Softmax-DPO (S-DPO) to instill ranking information into the LM to help LM-based recommenders distinguish preferred items from negatives.
Specifically, we incorporate multiple negatives in user preference data and devise an alternative version of DPO loss tailored for LM-based recommenders.
arXiv Detail & Related papers (2024-06-13T15:16:11Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.