Learning from Limited and Imperfect Data
- URL: http://arxiv.org/abs/2507.21205v1
- Date: Mon, 28 Jul 2025 17:54:15 GMT
- Title: Learning from Limited and Imperfect Data
- Authors: Harsh Rangwani,
- Abstract summary: We develop algorithms for Deep Neural Networks which can learn from limited or imperfect data present in the real world.<n>This thesis is divided into four segments, each covering a scenario of learning from limited or imperfect data.
- Score: 6.30667368422346
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The distribution of data in the world (eg, internet, etc.) significantly differs from the well-curated datasets and is often over-populated with samples from common categories. The algorithms designed for well-curated datasets perform suboptimally when used for learning from imperfect datasets with long-tailed imbalances and distribution shifts. To expand the use of deep models, it is essential to overcome the labor-intensive curation process by developing robust algorithms that can learn from diverse, real-world data distributions. Toward this goal, we develop practical algorithms for Deep Neural Networks which can learn from limited and imperfect data present in the real world. This thesis is divided into four segments, each covering a scenario of learning from limited or imperfect data. The first part of the thesis focuses on Learning Generative Models from Long-Tail Data, where we mitigate the mode-collapse and enable diverse aesthetic image generations for tail (minority) classes. In the second part, we enable effective generalization on tail classes through Inductive Regularization schemes, which allow tail classes to generalize as effectively as the head classes without requiring explicit generation of images. In the third part, we develop algorithms for Optimizing Relevant Metrics for learning from long-tailed data with limited annotation (semi-supervised), followed by the fourth part, which focuses on the Efficient Domain Adaptation of the model to various domains with very few to zero labeled samples.
Related papers
- Learning from Limited and Imperfect Data [6.30667368422346]
We develop practical algorithms for Deep Neural Networks that can learn from limited and imperfect data present in the real world.
These works are divided into four segments, each covering a scenario of learning from limited or imperfect data.
arXiv Detail & Related papers (2024-11-11T18:48:31Z) - FedLF: Adaptive Logit Adjustment and Feature Optimization in Federated Long-Tailed Learning [5.23984567704876]
Federated learning offers a paradigm to the challenge of preserving privacy in distributed machine learning.
Traditional approach fails to address the phenomenon of class-wise bias in global long-tailed data.
New method FedLF introduces three modifications in the local training phase: adaptive logit adjustment, continuous class centred optimization, and feature decorrelation.
arXiv Detail & Related papers (2024-09-18T16:25:29Z) - Long-Tailed Recognition on Binary Networks by Calibrating A Pre-trained Model [18.58663937035378]
We address the combined challenge of learning long-tailed distributions using highly resource-efficient binary neural networks as backbones.
We propose a calibrate-and-distill framework that uses off-the-shelf pretrained full-precision models trained on balanced datasets to use as teachers for distillation.
To better generalize to various datasets, we propose a novel adversarial balancing among the terms in the objective function and an efficient multiresolution learning scheme.
arXiv Detail & Related papers (2024-03-30T08:37:19Z) - Group Distributionally Robust Dataset Distillation with Risk Minimization [17.05513836324578]
We introduce an algorithm that combines clustering with the minimization of a risk measure on the loss to conduct DD.<n>We provide a theoretical rationale for our approach and demonstrate its effective generalization and robustness across subgroups.
arXiv Detail & Related papers (2024-02-07T09:03:04Z) - Exploring Data Redundancy in Real-world Image Classification through
Data Selection [20.389636181891515]
Deep learning models often require large amounts of data for training, leading to increased costs.
We present two data valuation metrics based on Synaptic Intelligence and gradient norms, respectively, to study redundancy in real-world image data.
Online and offline data selection algorithms are then proposed via clustering and grouping based on the examined data values.
arXiv Detail & Related papers (2023-06-25T03:31:05Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
Learning on small data that approximates the generalization ability of big data is one of the ultimate purposes of AI.
This survey follows the active sampling theory under a PAC framework to analyze the generalization error and label complexity of learning on small data.
Multiple data applications that may benefit from efficient small data representation are surveyed.
arXiv Detail & Related papers (2022-07-29T02:34:19Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
This paper presents CvS, a cost-effective classifier for small datasets that derives the classification labels from predicting the segmentation maps.
We evaluate the effectiveness of our framework on diverse problems showing that CvS is able to achieve much higher classification results compared to previous methods when given only a handful of examples.
arXiv Detail & Related papers (2021-10-29T18:41:15Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Dataset Cartography: Mapping and Diagnosing Datasets with Training
Dynamics [118.75207687144817]
We introduce Data Maps, a model-based tool to characterize and diagnose datasets.
We leverage a largely ignored source of information: the behavior of the model on individual instances during training.
Our results indicate that a shift in focus from quantity to quality of data could lead to robust models and improved out-of-distribution generalization.
arXiv Detail & Related papers (2020-09-22T20:19:41Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.