On Explaining Visual Captioning with Hybrid Markov Logic Networks
- URL: http://arxiv.org/abs/2507.21246v1
- Date: Mon, 28 Jul 2025 18:07:30 GMT
- Title: On Explaining Visual Captioning with Hybrid Markov Logic Networks
- Authors: Monika Shah, Somdeb Sarkhel, Deepak Venugopal,
- Abstract summary: We develop an explanation framework that is easily interpretable based on Hybrid Markov Logic Networks (HMLNs)<n>We learn a HMLN distribution over the training instances and infer the shift in distributions over these instances when we condition on the generated sample.<n>Experiments on captions generated for several state-of-the-art captioning models using Amazon Mechanical Turk illustrate the interpretability of our explanations.
- Score: 2.113770213797994
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep Neural Networks (DNNs) have made tremendous progress in multimodal tasks such as image captioning. However, explaining/interpreting how these models integrate visual information, language information and knowledge representation to generate meaningful captions remains a challenging problem. Standard metrics to measure performance typically rely on comparing generated captions with human-written ones that may not provide a user with a deep insights into this integration. In this work, we develop a novel explanation framework that is easily interpretable based on Hybrid Markov Logic Networks (HMLNs) - a language that can combine symbolic rules with real-valued functions - where we hypothesize how relevant examples from the training data could have influenced the generation of the observed caption. To do this, we learn a HMLN distribution over the training instances and infer the shift in distributions over these instances when we condition on the generated sample which allows us to quantify which examples may have been a source of richer information to generate the observed caption. Our experiments on captions generated for several state-of-the-art captioning models using Amazon Mechanical Turk illustrate the interpretability of our explanations, and allow us to compare these models along the dimension of explainability.
Related papers
- Disentangling Fine-Tuning from Pre-Training in Visual Captioning with Hybrid Markov Logic [2.113770213797994]
We learn a probabilistic model using Hybrid Markov Logic Networks (HMLNs) over the training examples.<n>For a generated caption, we quantify the influence of training examples based on the HMLN distribution.
arXiv Detail & Related papers (2025-03-18T02:39:26Z) - Towards Retrieval-Augmented Architectures for Image Captioning [81.11529834508424]
This work presents a novel approach towards developing image captioning models that utilize an external kNN memory to improve the generation process.
Specifically, we propose two model variants that incorporate a knowledge retriever component that is based on visual similarities.
We experimentally validate our approach on COCO and nocaps datasets and demonstrate that incorporating an explicit external memory can significantly enhance the quality of captions.
arXiv Detail & Related papers (2024-05-21T18:02:07Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Seeing in Words: Learning to Classify through Language Bottlenecks [59.97827889540685]
Humans can explain their predictions using succinct and intuitive descriptions.
We show that a vision model whose feature representations are text can effectively classify ImageNet images.
arXiv Detail & Related papers (2023-06-29T00:24:42Z) - CapText: Large Language Model-based Caption Generation From Image
Context and Description [0.0]
We propose and evaluate a new approach to generate captions from textual descriptions and context alone.
Our approach outperforms current state-of-the-art image-text alignment models like OSCAR-VinVL on this task on the CIDEr metric.
arXiv Detail & Related papers (2023-06-01T02:40:44Z) - Retrieval-Augmented Transformer for Image Captioning [51.79146669195357]
We develop an image captioning approach with a kNN memory, with which knowledge can be retrieved from an external corpus to aid the generation process.
Our architecture combines a knowledge retriever based on visual similarities, a differentiable encoder, and a kNN-augmented attention layer to predict tokens.
Experimental results, conducted on the COCO dataset, demonstrate that employing an explicit external memory can aid the generation process and increase caption quality.
arXiv Detail & Related papers (2022-07-26T19:35:49Z) - Neuro-Symbolic Representations for Video Captioning: A Case for
Leveraging Inductive Biases for Vision and Language [148.0843278195794]
We propose a new model architecture for learning multi-modal neuro-symbolic representations for video captioning.
Our approach uses a dictionary learning-based method of learning relations between videos and their paired text descriptions.
arXiv Detail & Related papers (2020-11-18T20:21:19Z) - Fusion Models for Improved Visual Captioning [18.016295296424413]
This paper proposes a generic multimodal model fusion framework for caption generation and emendation.
We employ the same fusion strategies to integrate a pretrained Masked Language Model (MLM) with a visual captioning model, viz. Show, Attend, and Tell.
Our caption emendation experiments on three benchmark image captioning datasets, viz. Flickr8k, Flickr30k, and MSCOCO, show improvements over the baseline.
arXiv Detail & Related papers (2020-10-28T21:55:25Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
We present a novel image captioning architecture to better explore semantics available in captions and leverage that to enhance both image representation and caption generation.
Our models first construct caption-guided visual relationship graphs that introduce beneficial inductive bias using weakly supervised multi-instance learning.
During generation, the model further incorporates visual relationships using multi-task learning for jointly predicting word and object/predicate tag sequences.
arXiv Detail & Related papers (2020-06-21T14:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.