Hebbian Memory-Augmented Recurrent Networks: Engram Neurons in Deep Learning
- URL: http://arxiv.org/abs/2507.21474v1
- Date: Tue, 29 Jul 2025 03:34:32 GMT
- Title: Hebbian Memory-Augmented Recurrent Networks: Engram Neurons in Deep Learning
- Authors: Daniel Szelogowski,
- Abstract summary: We introduce the Engram Neural Network (ENN), a novel recurrent architecture incorporating an explicit, differentiable memory matrix with Hebbian plasticity and sparse, attention-driven retrieval mechanisms.<n>The ENN explicitly models memory formation and recall through dynamic Hebbian traces, improving transparency and interpretability compared to conventional RNN variants.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite success across diverse tasks, current artificial recurrent network architectures rely primarily on implicit hidden-state memories, limiting their interpretability and ability to model long-range dependencies. In contrast, biological neural systems employ explicit, associative memory traces (i.e., engrams) strengthened through Hebbian synaptic plasticity and activated sparsely during recall. Motivated by these neurobiological insights, we introduce the Engram Neural Network (ENN), a novel recurrent architecture incorporating an explicit, differentiable memory matrix with Hebbian plasticity and sparse, attention-driven retrieval mechanisms. The ENN explicitly models memory formation and recall through dynamic Hebbian traces, improving transparency and interpretability compared to conventional RNN variants. We evaluate the ENN architecture on three canonical benchmarks: MNIST digit classification, CIFAR-10 image sequence modeling, and WikiText-103 language modeling. Our empirical results demonstrate that the ENN achieves accuracy and generalization performance broadly comparable to classical RNN, GRU, and LSTM architectures, with all models converging to similar accuracy and perplexity on the large-scale WikiText-103 task. At the same time, the ENN offers significant enhancements in interpretability through observable memory dynamics. Hebbian trace visualizations further reveal biologically plausible, structured memory formation processes, validating the potential of neuroscience-inspired mechanisms to inform the development of more interpretable and robust deep learning models.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - A Neural Network Model of Complementary Learning Systems: Pattern Separation and Completion for Continual Learning [2.9123921488295768]
Learning new information without forgetting prior knowledge is central to human intelligence.<n>In contrast, neural network models suffer from catastrophic forgetting when acquiring new information.<n>We develop a neurally plausible continual learning model that achieves close to state-of-the-art accuracy (90%)<n>Our work provides a functional template for modeling memory consolidation, generalization, and continual learning in both biological and artificial systems.
arXiv Detail & Related papers (2025-07-15T15:05:26Z) - Concept-Guided Interpretability via Neural Chunking [54.73787666584143]
We show that neural networks exhibit patterns in their raw population activity that mirror regularities in the training data.<n>We propose three methods to extract these emerging entities, complementing each other based on label availability and dimensionality.<n>Our work points to a new direction for interpretability, one that harnesses both cognitive principles and the structure of naturalistic data.
arXiv Detail & Related papers (2025-05-16T13:49:43Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
We introduce and evaluate a brain-like neural network model capable of unsupervised representation learning.<n>The model was tested on a diverse set of popular machine learning benchmarks.
arXiv Detail & Related papers (2024-06-07T08:32:30Z) - Spiking representation learning for associative memories [0.0]
We introduce a novel artificial spiking neural network (SNN) that performs unsupervised representation learning and associative memory operations.<n>The architecture of our model derives from the neocortical columnar organization and combines feedforward projections for learning hidden representations and recurrent projections for forming associative memories.
arXiv Detail & Related papers (2024-06-05T08:30:11Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Modelling Neuronal Behaviour with Time Series Regression: Recurrent
Neural Networks on C. Elegans Data [0.0]
We show how the nervous system of C. Elegans can be modelled and simulated with data-driven models using different neural network architectures.
We show that GRU models with a hidden layer size of 4 units are able to accurately reproduce with high accuracy the system's response to very different stimuli.
arXiv Detail & Related papers (2021-07-01T10:39:30Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
We propose a novel incrementally trained recurrent architecture targeting explicitly multi-scale learning.
We show how to extend the architecture of a simple RNN by separating its hidden state into different modules.
We discuss a training algorithm where new modules are iteratively added to the model to learn progressively longer dependencies.
arXiv Detail & Related papers (2020-06-29T08:35:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.