Emerging Trends in Pseudo-Label Refinement for Weakly Supervised Semantic Segmentation with Image-Level Supervision
- URL: http://arxiv.org/abs/2507.21587v1
- Date: Tue, 29 Jul 2025 08:41:58 GMT
- Title: Emerging Trends in Pseudo-Label Refinement for Weakly Supervised Semantic Segmentation with Image-Level Supervision
- Authors: Zheyuan Zhang, Wang Zhang,
- Abstract summary: weakly supervised semantic segmentation (WSSS) relies on weaker forms of supervision to perform dense prediction tasks.<n>Among the various types of weak supervision, WSSS with image level annotations is considered both the most challenging and the most practical.
- Score: 3.8671438370109708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unlike fully supervised semantic segmentation, weakly supervised semantic segmentation (WSSS) relies on weaker forms of supervision to perform dense prediction tasks. Among the various types of weak supervision, WSSS with image level annotations is considered both the most challenging and the most practical, attracting significant research attention. Therefore, in this review, we focus on WSSS with image level annotations. Additionally, this review concentrates on mainstream research directions, deliberately omitting less influential branches. Given the rapid development of new methods and the limitations of existing surveys in capturing recent trends, there is a pressing need for an updated and comprehensive review. Our goal is to fill this gap by synthesizing the latest advancements and state-of-the-art techniques in WSSS with image level labels. Basically, we provide a comprehensive review of recent advancements in WSSS with image level labels, categorizing existing methods based on the types and levels of additional supervision involved. We also examine the challenges of applying advanced methods to domain specific datasets in WSSS,a topic that remains underexplored. Finally, we discuss the current challenges, evaluate the limitations of existing approaches, and outline several promising directions for future research. This review is intended for researchers who are already familiar with the fundamental concepts of WSSS and are seeking to deepen their understanding of current advances and methodological innovations.
Related papers
- Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - Rethinking Saliency-Guided Weakly-Supervised Semantic Segmentation [57.9703659407207]
This paper presents a fresh perspective on the role of saliency maps in weakly-supervised semantic segmentation (WSSS)
We observe that the quality of the saliency map is a critical factor in saliency-guided WSSS approaches.
We introduce textttWSSS-BED, a standardized framework for conducting research under unified conditions.
arXiv Detail & Related papers (2024-04-01T04:49:47Z) - Fine-Grained Zero-Shot Learning: Advances, Challenges, and Prospects [84.36935309169567]
We present a broad review of recent advances for fine-grained analysis in zero-shot learning (ZSL)
We first provide a taxonomy of existing methods and techniques with a thorough analysis of each category.
Then, we summarize the benchmark, covering publicly available datasets, models, implementations, and some more details as a library.
arXiv Detail & Related papers (2024-01-31T11:51:24Z) - Robust Saliency-Aware Distillation for Few-shot Fine-grained Visual
Recognition [57.08108545219043]
Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision.
Existing literature addresses this challenge by employing local-based representation approaches.
This article proposes a novel model, Robust Saliency-aware Distillation (RSaD), for few-shot fine-grained visual recognition.
arXiv Detail & Related papers (2023-05-12T00:13:17Z) - Few Shot Semantic Segmentation: a review of methodologies, benchmarks, and open challenges [5.0243930429558885]
Few-Shot Semantic is a novel task in computer vision, which aims at designing models capable of segmenting new semantic classes with only a few examples.
This paper consists of a comprehensive survey of Few-Shot Semantic, tracing its evolution and exploring various model designs.
arXiv Detail & Related papers (2023-04-12T13:07:37Z) - A Survey on Semi-Supervised Semantic Segmentation [3.5450828190071655]
This study provides an overview of the current state of the art in semi-supervised semantic segmentation.
It includes an experimentation with a variety of models representing all the categories of the taxonomy on the most widely used becnhmark datasets in the literature.
arXiv Detail & Related papers (2023-02-20T10:54:03Z) - Semantic Image Segmentation: Two Decades of Research [22.533249554532322]
This book is an effort to summarize two decades of research in the field of semantic image segmentation (SiS)
We propose a review of solutions starting from early historical methods followed by an overview of more recent deep learning methods including the latest trend of using transformers.
We unveil newer trends such as multi-domain learning, domain generalization, domain incremental learning, test-time adaptation and source-free domain adaptation.
arXiv Detail & Related papers (2023-02-13T14:11:05Z) - A Survey on Label-efficient Deep Segmentation: Bridging the Gap between
Weak Supervision and Dense Prediction [115.9169213834476]
This paper offers a comprehensive review on label-efficient segmentation methods.
We first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels.
Next, we summarize the existing label-efficient segmentation methods from a unified perspective.
arXiv Detail & Related papers (2022-07-04T06:21:01Z) - Recent Few-Shot Object Detection Algorithms: A Survey with Performance
Comparison [54.357707168883024]
Few-Shot Object Detection (FSOD) mimics the humans' ability of learning to learn.
FSOD intelligently transfers the learned generic object knowledge from the common heavy-tailed, to the novel long-tailed object classes.
We give an overview of FSOD, including the problem definition, common datasets, and evaluation protocols.
arXiv Detail & Related papers (2022-03-27T04:11:28Z) - Unsupervised Domain Adaptation in Semantic Segmentation: a Review [22.366638308792734]
The aim of this paper is to give an overview of the recent advancements in the Unsupervised Domain Adaptation (UDA) of deep networks for semantic segmentation.
arXiv Detail & Related papers (2020-05-21T20:10:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.