Automated Detection of Antarctic Benthic Organisms in High-Resolution In Situ Imagery to Aid Biodiversity Monitoring
- URL: http://arxiv.org/abs/2507.21665v1
- Date: Tue, 29 Jul 2025 10:22:29 GMT
- Title: Automated Detection of Antarctic Benthic Organisms in High-Resolution In Situ Imagery to Aid Biodiversity Monitoring
- Authors: Cameron Trotter, Huw Griffiths, Tasnuva Ming Khan, Rowan Whittle,
- Abstract summary: We present a tailored object detection framework for Antarctic benthic organisms in high-resolution towed camera imagery.<n>We show strong performance in detecting medium and large organisms across 25 fine-grained morphotypes.<n>Our framework provides a scalable foundation for future machine-assisted in situ benthic biodiversity monitoring research.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring benthic biodiversity in Antarctica is vital for understanding ecological change in response to climate-driven pressures. This work is typically performed using high-resolution imagery captured in situ, though manual annotation of such data remains laborious and specialised, impeding large-scale analysis. We present a tailored object detection framework for identifying and classifying Antarctic benthic organisms in high-resolution towed camera imagery, alongside the first public computer vision dataset for benthic biodiversity monitoring in the Weddell Sea. Our approach addresses key challenges associated with marine ecological imagery, including limited annotated data, variable object sizes, and complex seafloor structure. The proposed framework combines resolution-preserving patching, spatial data augmentation, fine-tuning, and postprocessing via Slicing Aided Hyper Inference. We benchmark multiple object detection architectures and demonstrate strong performance in detecting medium and large organisms across 25 fine-grained morphotypes, significantly more than other works in this area. Detection of small and rare taxa remains a challenge, reflecting limitations in current detection architectures. Our framework provides a scalable foundation for future machine-assisted in situ benthic biodiversity monitoring research.
Related papers
- Real-time Seafloor Segmentation and Mapping [0.0]
Posidonia oceanica meadows are a species of seagrass highly dependent on rocks for their survival and conservation.<n>Deep learning-based semantic segmentation and visual automated monitoring systems have shown promise in a variety of applications.<n>This paper introduces a framework that combines machine learning and computer vision techniques to enable an autonomous underwater vehicle (AUV) to inspect the boundaries of Posidonia oceanica meadows autonomously.
arXiv Detail & Related papers (2025-04-14T22:49:08Z) - Inland Waterway Object Detection in Multi-environment: Dataset and Approach [12.00732943849236]
This paper introduces the Multi-environment Inland Waterway Vessel dataset (MEIWVD)<n>MEIWVD comprises 32,478 high-quality images from diverse scenarios, including sunny, rainy, foggy, and artificial lighting conditions.<n>This paper proposes a scene-guided image enhancement module to improve water surface images based on environmental conditions adaptively.
arXiv Detail & Related papers (2025-04-07T08:45:00Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images.<n>This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes.
arXiv Detail & Related papers (2025-03-06T05:13:19Z) - Insect Identification in the Wild: The AMI Dataset [35.41544843896443]
Insects represent half of all global biodiversity, yet many of the world's insects are disappearing.
Despite this crisis, data on insect diversity and abundance remain woefully inadequate.
We provide the first large-scale machine learning benchmarks for fine-grained insect recognition.
arXiv Detail & Related papers (2024-06-18T09:57:02Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - Wild Face Anti-Spoofing Challenge 2023: Benchmark and Results [73.98594459933008]
Face anti-spoofing (FAS) is an essential mechanism for safeguarding the integrity of automated face recognition systems.
This limitation can be attributed to the scarcity and lack of diversity in publicly available FAS datasets.
We introduce the Wild Face Anti-Spoofing dataset, a large-scale, diverse FAS dataset collected in unconstrained settings.
arXiv Detail & Related papers (2023-04-12T10:29:42Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
Harmful algal blooms (HABs) cause significant fish deaths in aquaculture farms.
Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope.
We employ Generative Adversarial Networks (GANs) to generate synthetic images.
arXiv Detail & Related papers (2022-08-03T20:15:55Z) - Ensembles of Vision Transformers as a New Paradigm for Automated
Classification in Ecology [0.0]
We show that ensembles of Data-efficient image Transformers (DeiTs) significantly outperform the previous state of the art (SOTA)
On all the data sets we test, we achieve a new SOTA, with a reduction of the error with respect to the previous SOTA ranging from 18.48% to 87.50%.
arXiv Detail & Related papers (2022-03-03T14:16:22Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.