The Problem with Safety Classification is not just the Models
- URL: http://arxiv.org/abs/2507.21782v1
- Date: Tue, 29 Jul 2025 13:09:40 GMT
- Title: The Problem with Safety Classification is not just the Models
- Authors: Sowmya Vajjala,
- Abstract summary: We show how multilingual disparities exist in 5 safety classification models by considering datasets covering 18 languages.<n>We identify potential issues with the evaluation datasets, arguing that the shortcomings of current safety classifiers are not only because of the models themselves.
- Score: 3.2634122554914002
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Studying the robustness of Large Language Models (LLMs) to unsafe behaviors is an important topic of research today. Building safety classification models or guard models, which are fine-tuned models for input/output safety classification for LLMs, is seen as one of the solutions to address the issue. Although there is a lot of research on the safety testing of LLMs themselves, there is little research on evaluating the effectiveness of such safety classifiers or the evaluation datasets used for testing them, especially in multilingual scenarios. In this position paper, we demonstrate how multilingual disparities exist in 5 safety classification models by considering datasets covering 18 languages. At the same time, we identify potential issues with the evaluation datasets, arguing that the shortcomings of current safety classifiers are not only because of the models themselves. We expect that these findings will contribute to the discussion on developing better methods to identify harmful content in LLM inputs across languages.
Related papers
- PL-Guard: Benchmarking Language Model Safety for Polish [43.39208658482427]
We introduce a manually annotated benchmark dataset for language model safety classification in Polish.<n>We also create adversarially perturbed variants of these samples designed to challenge model robustness.<n>We train these models using different combinations of annotated data and evaluate their performance, comparing it against publicly available guard models.
arXiv Detail & Related papers (2025-06-19T13:56:41Z) - Do We Really Need Curated Malicious Data for Safety Alignment in Multi-modal Large Language Models? [83.53005932513155]
Multi-modal large language models (MLLMs) have made significant progress, yet their safety alignment remains limited.<n>We propose finetuning MLLMs on a small set of benign instruct-following data with responses replaced by simple, clear rejection sentences.
arXiv Detail & Related papers (2025-04-14T09:03:51Z) - Do LLMs Understand the Safety of Their Inputs? Training-Free Moderation via Latent Prototypes [1.0779346838250028]
Latent Prototype Moderator (LPM) is a training-free moderation method that uses Mahalanobis distance in latent space to assess input safety.<n>LPM matches or exceeds state-of-the-art guard models across multiple safety benchmarks.
arXiv Detail & Related papers (2025-02-22T10:31:50Z) - LLMs Lost in Translation: M-ALERT uncovers Cross-Linguistic Safety Inconsistencies [63.10843814055688]
M-ALERT is a benchmark that evaluates the safety of Large Language Models in five languages.<n>M-ALERT includes 15k high-quality prompts per language, totaling 75k, with category-wise annotations.<n>Our experiments on 39 state-of-the-art LLMs highlight the importance of language-specific safety analysis.
arXiv Detail & Related papers (2024-12-19T16:46:54Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
We propose toolns, a comprehensive framework designed for conducting safety evaluations of MLLMs.
Our framework consists of a comprehensive harmful query dataset and an automated evaluation protocol.
Based on our framework, we conducted large-scale experiments on 15 widely-used open-source MLLMs and 6 commercial MLLMs.
arXiv Detail & Related papers (2024-10-24T17:14:40Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal [64.9938658716425]
SORRY-Bench is a proposed benchmark for evaluating large language models' (LLMs) ability to recognize and reject unsafe user requests.<n>First, existing methods often use coarse-grained taxonomy of unsafe topics, and are over-representing some fine-grained topics.<n>Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations.
arXiv Detail & Related papers (2024-06-20T17:56:07Z) - CHiSafetyBench: A Chinese Hierarchical Safety Benchmark for Large Language Models [7.054112690519648]
CHiSafetyBench is a safety benchmark for evaluating large language models' capabilities in identifying risky content and refusing answering risky questions in Chinese contexts.
This dataset comprises two types of tasks: multiple-choice questions and question-answering, evaluating LLMs from the perspectives of risk content identification and the ability to refuse answering risky questions respectively.
Our experiments reveal the varying performance of different models across various safety domains, indicating that all models possess considerable potential for improvement in Chinese safety capabilities.
arXiv Detail & Related papers (2024-06-14T06:47:40Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERT is a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy.
It aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models.
arXiv Detail & Related papers (2024-04-06T15:01:47Z) - A Chinese Dataset for Evaluating the Safeguards in Large Language Models [46.43476815725323]
Large language models (LLMs) can produce harmful responses.
This paper introduces a dataset for the safety evaluation of Chinese LLMs.
We then extend it to two other scenarios that can be used to better identify false negative and false positive examples.
arXiv Detail & Related papers (2024-02-19T14:56:18Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.