An Agentic AI for a New Paradigm in Business Process Development
- URL: http://arxiv.org/abs/2507.21823v1
- Date: Tue, 29 Jul 2025 13:58:24 GMT
- Title: An Agentic AI for a New Paradigm in Business Process Development
- Authors: Mohammad Azarijafari, Luisa Mich, Michele Missikoff,
- Abstract summary: We introduce a new approach for business process design and development that leverages the capabilities of Agentic AI.<n>We propose an agent-based method, where agents contribute to the achievement of business goals, identified by a set of business objects.<n>As a result, this approach enables flexible and context-aware automation in dynamic industrial environments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence agents represent the next major revolution in the continuous technological evolution of industrial automation. In this paper, we introduce a new approach for business process design and development that leverages the capabilities of Agentic AI. Departing from the traditional task-based approach to business process design, we propose an agent-based method, where agents contribute to the achievement of business goals, identified by a set of business objects. When a single agent cannot fulfill a goal, we have a merge goal that can be achieved through the collaboration of multiple agents. The proposed model leads to a more modular and intelligent business process development by organizing it around goals, objects, and agents. As a result, this approach enables flexible and context-aware automation in dynamic industrial environments.
Related papers
- A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static.<n>As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck.<n>This survey provides the first systematic and comprehensive review of self-evolving agents.
arXiv Detail & Related papers (2025-07-28T17:59:05Z) - Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web.<n>In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users.<n>We present a structured framework for understanding and building the Agentic Web.
arXiv Detail & Related papers (2025-07-28T17:58:12Z) - AI Agents and Agentic AI-Navigating a Plethora of Concepts for Future Manufacturing [8.195356684218691]
AI agents are autonomous systems designed to perceive, reason, and act within dynamic environments.<n>LLMs, MLLMs, and Agentic AI contribute to expanding AI's capabilities in information processing, environmental perception, and autonomous decision-making.<n>This study systematically reviews the evolution of AI and AI agent technologies.
arXiv Detail & Related papers (2025-07-02T05:31:17Z) - Agentic AI for Intent-Based Industrial Automation [0.6906005491572401]
This work proposes a conceptual framework that integrates Agentic AI with the intent-based paradigm.<n>Based on the intent-based processing, the framework allows human operators to express high-level business or operational goals in natural language.<n>A proof of concept was implemented using the CMAPSS dataset and Google Agent Developer Kit (ADK)
arXiv Detail & Related papers (2025-06-05T12:50:54Z) - Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
We introduce the Internet of Agents (IoA) as a foundational framework that enables seamless interconnection, dynamic discovery, and collaborative orchestration among heterogeneous agents at scale.<n>We analyze the key operational enablers of IoA, including capability notification and discovery, adaptive communication protocols, dynamic task matching, consensus and conflict-resolution mechanisms, and incentive models.
arXiv Detail & Related papers (2025-05-12T02:04:37Z) - Towards Agentic AI Networking in 6G: A Generative Foundation Model-as-Agent Approach [35.05793485239977]
We propose AgentNet, a novel framework for supporting interaction, collaborative learning, and knowledge transfer among AI agents.<n>We consider two application scenarios, digital-twin-based industrial automation and metaverse-based infotainment system, to describe how to apply AgentNet.
arXiv Detail & Related papers (2025-03-20T00:48:44Z) - AI Agentic workflows and Enterprise APIs: Adapting API architectures for the age of AI agents [0.0]
Generative AI has catalyzed the emergence of autonomous AI agents, presenting unprecedented challenges for enterprise computing infrastructures.<n>Current enterprise API architectures are predominantly designed for human-driven, predefined interaction patterns, rendering them ill-equipped to support intelligent agents' dynamic, goal-oriented behaviors.<n>This research systematically examines the architectural adaptations for enterprise APIs to support AI agentic effectively.
arXiv Detail & Related papers (2025-01-22T05:55:16Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
Large Language Models (LLMs) have emerged human-like intelligence.
This paper introduces Agentic Process Automation (APA), a groundbreaking automation paradigm using LLM-based agents for advanced automation.
We then instantiate ProAgent, an agent designed to craft from human instructions and make intricate decisions by coordinating specialized agents.
arXiv Detail & Related papers (2023-11-02T14:32:16Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.