Contrast-Prior Enhanced Duality for Mask-Free Shadow Removal
- URL: http://arxiv.org/abs/2507.21949v1
- Date: Tue, 29 Jul 2025 16:00:42 GMT
- Title: Contrast-Prior Enhanced Duality for Mask-Free Shadow Removal
- Authors: Jiyu Wu, Yifan Liu, Jiancheng Huang, Mingfu Yan, Shifeng Chen,
- Abstract summary: Existing shadow removal methods often rely on shadow masks, which are challenging to acquire in real-world scenarios.<n> Exploring intrinsic image cues, such as local contrast information, presents a potential alternative for guiding shadow removal in the absence of explicit masks.<n>We propose the Adaptive Gated Dual-Branch Attention (AGBA) mechanism, which filters and re-weighs the contrast prior to effectively disentangle shadow features.
- Score: 12.417806583744134
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing shadow removal methods often rely on shadow masks, which are challenging to acquire in real-world scenarios. Exploring intrinsic image cues, such as local contrast information, presents a potential alternative for guiding shadow removal in the absence of explicit masks. However, the cue's inherent ambiguity becomes a critical limitation in complex scenes, where it can fail to distinguish true shadows from low-reflectance objects and intricate background textures. To address this motivation, we propose the Adaptive Gated Dual-Branch Attention (AGBA) mechanism. AGBA dynamically filters and re-weighs the contrast prior to effectively disentangle shadow features from confounding visual elements. Furthermore, to tackle the persistent challenge of restoring soft shadow boundaries and fine-grained details, we introduce a diffusion-based Frequency-Contrast Fusion Network (FCFN) that leverages high-frequency and contrast cues to guide the generative process. Extensive experiments demonstrate that our method achieves state-of-the-art results among mask-free approaches while maintaining competitive performance relative to mask-based methods.
Related papers
- Retinex-guided Histogram Transformer for Mask-free Shadow Removal [12.962534359029103]
ReHiT is an efficient mask-free shadow removal framework based on a hybrid CNN-Transformer architecture guided by Retinex theory.<n>Our solution delivers competitive results with one of the smallest parameter sizes and fastest inference speeds among top-ranked entries.
arXiv Detail & Related papers (2025-04-18T22:19:40Z) - MetaShadow: Object-Centered Shadow Detection, Removal, and Synthesis [64.00425120075045]
Shadows are often under-considered or even ignored in image editing applications, limiting the realism of the edited results.<n>In this paper, we introduce MetaShadow, a three-in-one versatile framework that enables detection, removal, and controllable synthesis of shadows in natural images in an object-centered fashion.
arXiv Detail & Related papers (2024-12-03T18:04:42Z) - SoftShadow: Leveraging Soft Masks for Penumbra-Aware Shadow Removal [35.16957947180504]
We introduce novel soft shadow masks specifically designed for shadow removal.<n>We propose a SoftShadow framework by leveraging the prior knowledge of pretrained SAM and integrating physical constraints.<n>This framework enables accurate predictions of penumbra (partially shaded) and umbra (fully shaded) areas while simultaneously facilitating end-to-end shadow removal.
arXiv Detail & Related papers (2024-09-11T06:12:26Z) - SwinShadow: Shifted Window for Ambiguous Adjacent Shadow Detection [90.4751446041017]
We present SwinShadow, a transformer-based architecture that fully utilizes the powerful shifted window mechanism for detecting adjacent shadows.
The whole process can be divided into three parts: encoder, decoder, and feature integration.
Experiments on three shadow detection benchmark datasets, SBU, UCF, and ISTD, demonstrate that our network achieves good performance in terms of balance error rate (BER)
arXiv Detail & Related papers (2024-08-07T03:16:33Z) - Cross-Modal Spherical Aggregation for Weakly Supervised Remote Sensing Shadow Removal [22.4845448174729]
We propose a weakly supervised shadow removal network with a spherical feature space, dubbed S2-ShadowNet, to explore the best of both worlds for visible and infrared modalities.
Specifically, we employ a modal translation (visible-to-infrared) model to learn the cross-domain mapping, thus generating realistic infrared samples.
We contribute a large-scale weakly supervised shadow removal benchmark, including 4000 shadow images with corresponding shadow masks.
arXiv Detail & Related papers (2024-06-25T11:14:09Z) - ShadowRefiner: Towards Mask-free Shadow Removal via Fast Fourier Transformer [41.008740643546226]
Shadow-affected images often exhibit pronounced spatial discrepancies in color and illumination.
We introduce a mask-free Shadow Removal and Refinement network (ShadowRefiner) via Fast Fourier Transformer.
Our method wins the championship in the Perceptual Track and achieves the second best performance in the Fidelity Track of NTIRE 2024 Image Shadow Removal Challenge.
arXiv Detail & Related papers (2024-04-18T03:53:33Z) - CLR-Face: Conditional Latent Refinement for Blind Face Restoration Using
Score-Based Diffusion Models [57.9771859175664]
Recent generative-prior-based methods have shown promising blind face restoration performance.
Generating fine-grained facial details faithful to inputs remains a challenging problem.
We introduce a diffusion-based-prior inside a VQGAN architecture that focuses on learning the distribution over uncorrupted latent embeddings.
arXiv Detail & Related papers (2024-02-08T23:51:49Z) - Latent Feature-Guided Diffusion Models for Shadow Removal [47.21387783721207]
We propose the use of diffusion models as they offer a promising approach to gradually refine the details of shadow regions during the diffusion process.<n>Our method improves this process by conditioning on a learned latent feature space that inherits the characteristics of shadow-free images.<n>We demonstrate the effectiveness of our approach which outperforms the previous best method by 13% in terms of RMSE on the AISTD dataset.
arXiv Detail & Related papers (2023-12-04T18:59:55Z) - SIRe-IR: Inverse Rendering for BRDF Reconstruction with Shadow and
Illumination Removal in High-Illuminance Scenes [51.50157919750782]
We present SIRe-IR, an implicit neural rendering inverse approach that decomposes the scene into environment map, albedo, and roughness.
By accurately modeling the indirect radiance field, normal, visibility, and direct light simultaneously, we are able to remove both shadows and indirect illumination.
Even in the presence of intense illumination, our method recovers high-quality albedo and roughness with no shadow interference.
arXiv Detail & Related papers (2023-10-19T10:44:23Z) - SDDNet: Style-guided Dual-layer Disentanglement Network for Shadow Detection [85.16141353762445]
We treat the input shadow image as a composition of a background layer and a shadow layer, and design a Style-guided Dual-layer Disentanglement Network to model these layers independently.<n>Our model effectively minimizes the detrimental effects of background color, yielding superior performance on three public datasets with a real-time inference speed of 32 FPS.
arXiv Detail & Related papers (2023-08-17T12:10:51Z) - DeS3: Adaptive Attention-driven Self and Soft Shadow Removal using ViT Similarity [54.831083157152136]
We present a method that removes hard, soft and self shadows based on adaptive attention and ViT similarity.
Our method outperforms state-of-the-art methods on the SRD, AISTD, LRSS, USR and UIUC datasets.
arXiv Detail & Related papers (2022-11-15T12:15:29Z) - Shadow-Aware Dynamic Convolution for Shadow Removal [80.82708225269684]
We introduce a novel Shadow-Aware Dynamic Convolution (SADC) module to decouple the interdependence between the shadow region and the non-shadow region.
Inspired by the fact that the color mapping of the non-shadow region is easier to learn, our SADC processes the non-shadow region with a lightweight convolution module.
We develop a novel intra-convolution distillation loss to strengthen the information flow from the non-shadow region to the shadow region.
arXiv Detail & Related papers (2022-05-10T14:00:48Z) - Towards High Fidelity Face Relighting with Realistic Shadows [21.09340135707926]
Our method learns to predict the ratio (quotient) image between a source image and the target image with the desired lighting.
During training, our model also learns to accurately modify shadows by using estimated shadow masks.
We demonstrate that our proposed method faithfully maintains the local facial details of the subject and can accurately handle hard shadows.
arXiv Detail & Related papers (2021-04-02T00:28:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.