CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback
- URL: http://arxiv.org/abs/2507.22080v1
- Date: Fri, 25 Jul 2025 16:12:51 GMT
- Title: CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback
- Authors: Qiushi Sun, Jinyang Gong, Lei Li, Qipeng Guo, Fei Yuan,
- Abstract summary: Acquiring high-quality instruction-code pairs is essential for training Large Language Models.<n>We propose CodeEvo, a framework that synthesizes code data through iterative interactions between two LLM agents.
- Score: 21.627909324788597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Acquiring high-quality instruction-code pairs is essential for training Large Language Models (LLMs) for code generation. Manually curated data is expensive and inherently limited in scale, motivating the development of code-centric synthesis methods. Yet, current approaches either focus on augmenting existing code or rely on predefined heuristics, both lacking rigorous data validation, which results in synthetic data that is ungrounded, repetitive, or overly simplistic. Inspired by collaborative programming practices, we propose CodeEvo, a framework that synthesizes code data through iterative interactions between two LLM agents: a Coder, which generates candidate code and test cases based on given instructions, and a Reviewer, which guides the synthesis process by producing new instructions and feedback. We further introduce a hybrid feedback mechanism that combines compiler determinism with the generative flexibility of agents, enabling automatic quality control throughout synthesis. Extensive experiments demonstrate that models fine-tuned on CodeEvo data significantly outperform established baselines across code generation benchmarks with various difficulties. In-depth analyses further provide insights from multiple perspectives into effective code-centric data synthesis.
Related papers
- Towards A Generalist Code Embedding Model Based On Massive Data Synthesis [35.04242699869519]
We introduce textbfCodeR (underlineCode underlineRetrieval), a state-of-the-art embedding model for general-purpose code retrieval.<n>The superior performance of CodeR is built upon CodeR-Pile, a large-scale synthetic dataset constructed under the DRU principle.
arXiv Detail & Related papers (2025-05-19T04:37:53Z) - ClarifyCoder: Clarification-Aware Fine-Tuning for Programmatic Problem Solving [3.683434365857386]
We present ClarifyCoder, a novel framework with synthetic data generation and instruction-tuning.<n>We argue that the fundamental ability to recognize and query ambiguous requirements should be intrinsic to the models themselves.<n>Our approach consists of two main components: (1) a data synthesis technique that augments existing programming datasets with scenarios requiring clarification to generate clarification-aware training data, and (2) a fine-tuning strategy that teaches models to prioritize seeking clarification over immediate code generation when faced with incomplete or ambiguous requirements.
arXiv Detail & Related papers (2025-04-23T00:34:39Z) - Synthetic Data Generation Using Large Language Models: Advances in Text and Code [0.0]
Large language models (LLMs) are transforming synthetic training data generation in both natural language and code domains.<n>We highlight key techniques such as prompt-based generation, retrieval-augmented pipelines, and iterative self-refinement.<n>We discuss the accompanying challenges, including factual inaccuracies in generated text, insufficient stylistic or distributional realism, and risks of bias amplification.
arXiv Detail & Related papers (2025-03-18T08:34:03Z) - KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding [49.56049319037421]
KodCode is a synthetic dataset that addresses the persistent challenge of acquiring high-quality, verifiable training data.<n>It comprises question-solution-test triplets that are systematically validated via a self-verification procedure.<n>This pipeline yields a large-scale, robust and diverse coding dataset.
arXiv Detail & Related papers (2025-03-04T19:17:36Z) - UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance [65.01483640267885]
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet code generation remains a major challenge.<n>We introduce UnitCoder, a systematic pipeline leveraging model-generated unit tests to guide and validate the code generation process.<n>Our work presents a scalable approach that leverages model-generated unit tests to guide the synthesis of high-quality code data from pre-training corpora.
arXiv Detail & Related papers (2025-02-17T05:37:02Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models [59.60208063956459]
Large Language Models (LLMs) require high quality instruction data for effective alignment.<n>We present Genetic-Instruct, a scalable algorithm for synthesizing large-scale, high quality coding instructions.
arXiv Detail & Related papers (2024-07-29T20:42:59Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
We present AlchemistCoder, a series of Code LLMs with enhanced code generation and generalization capabilities fine-tuned on multi-source data.
We propose incorporating the data construction process into the fine-tuning data as code comprehension tasks, including instruction evolution, data filtering, and code review.
arXiv Detail & Related papers (2024-05-29T16:57:33Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
We propose a new approach with multimodal contrastive learning and soft data augmentation for code search.
We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages.
arXiv Detail & Related papers (2022-04-07T08:49:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.