Efficient detection of localization transitions using predictability
- URL: http://arxiv.org/abs/2507.22151v1
- Date: Tue, 29 Jul 2025 18:32:39 GMT
- Title: Efficient detection of localization transitions using predictability
- Authors: Tiago Pernambuco, Jonas Maziero, Rafael Chaves,
- Abstract summary: We show that predictability serves as a robust and efficient marker for localization transitions.<n>Our results make predictability a powerful tool for probing quantum phase transitions.
- Score: 0.49157446832511503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying phase transition points is a fundamental challenge in condensed matter physics, particularly for transitions driven by quantum interference effects, such as Anderson and many-body localization. Recent studies have demonstrated that quantum coherence provides an effective means of detecting localization transitions, offering a practical alternative to full quantum state tomography and related approaches. Building on this idea, we investigate localization transitions through complementarity relations that connect local predictability, local coherence, and entanglement in bipartite pure states. Our results show that predictability serves as a robust and efficient marker for localization transitions. Crucially, its experimental determination requires exponentially fewer measurements than coherence or entanglement, making it a powerful tool for probing quantum phase transitions.
Related papers
- Aperiodic Dissipation as a Mechanism for Steady-State Localization [0.0]
Incommensurate modulation plays the most efficient role in stabilizing a localized steady-state.<n>Dissipation can actively shape localization rather than simply causing decoherence.
arXiv Detail & Related papers (2025-06-18T03:26:28Z) - Controlling measurement-induced phase transitions with tunable detector coupling [44.99833362998488]
We study the evolution of a quantum many-body system driven by two competing measurements.<n>We employ a positive operator-valued measurement with variable coupling between the system and detector.
arXiv Detail & Related papers (2024-04-11T17:02:58Z) - Equivariant Variational Quantum Eigensolver to detect Phase Transitions through Energy Level Crossings [0.0]
We introduce an equivariant quantum circuit that preserves the total spin and the translational symmetry to accurately describe singlet and triplet excited states.<n>We also assess the impact of noise on the variational state, showing that conventional mitigation techniques like Zero Noise Extrapolation reliably restore its physical properties.
arXiv Detail & Related papers (2024-03-11T18:51:57Z) - Quantum reservoir probing of quantum phase transitions [0.0]
We show that quantum phase transitions can be detected through localized out-of-equilibrium excitations induced by local quantum quenches.<n>The impacts of the local quenches vary across different quantum phases and are significantly suppressed by quantum fluctuations amplified near quantum critical points.<n>We demonstrate that the QRP can detect quantum phase transitions in the paradigmatic integrable and nonintegrable quantum spin systems, and even topological quantum phase transitions.
arXiv Detail & Related papers (2024-02-11T03:53:01Z) - Distinguishing dynamical quantum criticality through local fidelity
distances [0.0]
We study the dynamical quantum phase transition in integrable and non-integrable Ising chains.
The non-analyticities in the quantum distance between two subsystem density matrices identify the critical time.
We propose a distance measure from the upper bound of the local quantum fidelity for certain quench protocols.
arXiv Detail & Related papers (2023-08-01T10:27:35Z) - Localization Driven Quantum Sensing [0.0]
We show that the delocalization-localization transition in a quantum-many body (QMB) systems is a compelling quantum resource for achieving quantum-enhanced sensitivity in parameter estimation.
We exploit the vulnerability of a near-transition QMB state against the parameter shift for devising efficient sensing tools.
arXiv Detail & Related papers (2023-05-03T17:57:37Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Time-Dependent Dephasing and Quantum Transport [68.8204255655161]
We show that non-Markovian dephasing assisted transport manifests only in the non-symmetric configuration.
We find similar results by considering a controllable and experimentally implementable system.
arXiv Detail & Related papers (2021-02-20T22:44:08Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Probing the topological Anderson transition with quantum walks [48.7576911714538]
We consider one-dimensional quantum walks in optical linear networks with synthetically introduced disorder and tunable system parameters.
The option to directly monitor the walker's probability distribution makes this optical platform ideally suited for the experimental observation of the unique signatures of the one-dimensional topological Anderson transition.
arXiv Detail & Related papers (2021-02-01T21:19:15Z) - Classical, semiclassical and quantum signatures of quantum phase
transitions in a (pseudo) relativistic many-body system [0.0]
We identify a (pseudo) relativistic spin-dependent analogue of the celebrated quantum phase transition driven by the formation of a bright soliton in bosonic gases.
We numerically investigate the approach from its finite-size precursors to the sharp quantum phase transition in the thermodynamic limit.
arXiv Detail & Related papers (2020-07-09T09:08:17Z) - Unsupervised machine learning of quantum phase transitions using
diffusion maps [77.34726150561087]
We show that the diffusion map method, which performs nonlinear dimensionality reduction and spectral clustering of the measurement data, has significant potential for learning complex phase transitions unsupervised.
This method works for measurements of local observables in a single basis and is thus readily applicable to many experimental quantum simulators.
arXiv Detail & Related papers (2020-03-16T18:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.