CoEx -- Co-evolving World-model and Exploration
- URL: http://arxiv.org/abs/2507.22281v1
- Date: Tue, 29 Jul 2025 23:13:09 GMT
- Title: CoEx -- Co-evolving World-model and Exploration
- Authors: Minsoo Kim, Seung-won Hwang,
- Abstract summary: Planning in modern LLM agents relies on the utilization of LLM as an internal world model.<n>Existing agent designs fail to effectively assimilate new observations into dynamic updates of the world model.<n>We introduce a hierarchical agent architecture, CoEx, in which hierarchical state abstraction allows LLM planning to co-evolve with a dynamically updated model of the world.
- Score: 24.960276990968822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Planning in modern LLM agents relies on the utilization of LLM as an internal world model, acquired during pretraining. However, existing agent designs fail to effectively assimilate new observations into dynamic updates of the world model. This reliance on the LLM's static internal world model is progressively prone to misalignment with the underlying true state of the world, leading to the generation of divergent and erroneous plans. We introduce a hierarchical agent architecture, CoEx, in which hierarchical state abstraction allows LLM planning to co-evolve with a dynamically updated model of the world. CoEx plans and interacts with the world by using LLM reasoning to orchestrate dynamic plans consisting of subgoals, and its learning mechanism continuously incorporates these subgoal experiences into a persistent world model in the form of a neurosymbolic belief state, comprising textual inferences and code-based symbolic memory. We evaluate our agent across a diverse set of agent scenarios involving rich environments and complex tasks including ALFWorld, PDDL, and Jericho. Our experiments show that CoEx outperforms existing agent paradigms in planning and exploration.
Related papers
- SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model [88.04128601981145]
We introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning.<n>modelname overcomes the limitations of autoregressive reasoning by introducing a world model for planning via simulation.<n>World-model-based planning, in particular, shows consistent advantage of up to 124% over autoregressive planning.
arXiv Detail & Related papers (2025-07-31T17:57:20Z) - WebEvolver: Enhancing Web Agent Self-Improvement with Coevolving World Model [55.276852838877346]
Self-evolving agents are trained on trajectories sampled autonomously based on their own policies.<n>We propose a novel framework that introduces a co-evolving World Model LLM.<n>This world model predicts the next observation based on the current observation and action within the web environment.
arXiv Detail & Related papers (2025-04-23T02:54:31Z) - WALL-E 2.0: World Alignment by NeuroSymbolic Learning improves World Model-based LLM Agents [55.64361927346957]
We propose a training-free "world alignment" that learns an environment's symbolic knowledge complementary to large language models (LLMs)<n>We also propose an RL-free, model-based agent "WALL-E 2.0" through the model-predictive control framework.<n> WALL-E 2.0 significantly outperforms existing methods on open-world challenges in Mars (Minecraft like) and ALFWorld (embodied indoor environments)
arXiv Detail & Related papers (2025-04-22T10:58:27Z) - Inter-environmental world modeling for continuous and compositional dynamics [7.01176359680407]
We introduce Lie Action, an unsupervised framework that learns continuous latent action representations to simulate across environments.<n>We demonstrate that WLA can be trained using only video frames and, with minimal or no action labels, can quickly adapt to new environments with novel action sets.
arXiv Detail & Related papers (2025-03-13T00:02:54Z) - MINDSTORES: Memory-Informed Neural Decision Synthesis for Task-Oriented Reinforcement in Embodied Systems [0.5662299435213421]
We introduce MINDSTORES, an experience-augmented planning framework that enables embodied agents to build and leverage mental models.<n>We find that MINDSTORES learns and applies its knowledge significantly better than existing memory-based LLM planners.
arXiv Detail & Related papers (2025-01-31T17:15:33Z) - Making Large Language Models into World Models with Precondition and Effect Knowledge [1.8561812622368763]
We show that Large Language Models (LLMs) can be induced to perform two critical world model functions.
We validate that the precondition and effect knowledge generated by our models aligns with human understanding of world dynamics.
arXiv Detail & Related papers (2024-09-18T19:28:04Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - WorldGPT: Empowering LLM as Multimodal World Model [51.243464216500975]
We introduce WorldGPT, a generalist world model built upon Multimodal Large Language Model (MLLM)
WorldGPT acquires an understanding of world dynamics through analyzing millions of videos across various domains.
We conduct evaluations on WorldNet, a multimodal state transition prediction benchmark.
arXiv Detail & Related papers (2024-04-28T14:42:02Z) - WorldCoder, a Model-Based LLM Agent: Building World Models by Writing Code and Interacting with the Environment [11.81398773711566]
We give a model-based agent that builds a Python program representing its knowledge of the world based on its interactions with the environment.
We study our agent on gridworlds, and on task planning, finding our approach is more sample-efficient compared to deep RL, more compute-efficient compared to ReAct-style agents, and that it can transfer its knowledge across environments by editing its code.
arXiv Detail & Related papers (2024-02-19T16:39:18Z) - EgoPlan-Bench: Benchmarking Multimodal Large Language Models for Human-Level Planning [84.6451394629312]
We introduce EgoPlan-Bench, a benchmark to evaluate the planning abilities of MLLMs in real-world scenarios.
We show that EgoPlan-Bench poses significant challenges, highlighting a substantial scope for improvement in MLLMs to achieve human-level task planning.
We also present EgoPlan-IT, a specialized instruction-tuning dataset that effectively enhances model performance on EgoPlan-Bench.
arXiv Detail & Related papers (2023-12-11T03:35:58Z) - DREAMWALKER: Mental Planning for Continuous Vision-Language Navigation [107.5934592892763]
We propose DREAMWALKER -- a world model based VLN-CE agent.
The world model is built to summarize the visual, topological, and dynamic properties of the complicated continuous environment.
It can simulate and evaluate possible plans entirely in such internal abstract world, before executing costly actions.
arXiv Detail & Related papers (2023-08-14T23:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.