Magentic-UI: Towards Human-in-the-loop Agentic Systems
- URL: http://arxiv.org/abs/2507.22358v1
- Date: Wed, 30 Jul 2025 03:49:14 GMT
- Title: Magentic-UI: Towards Human-in-the-loop Agentic Systems
- Authors: Hussein Mozannar, Gagan Bansal, Cheng Tan, Adam Fourney, Victor Dibia, Jingya Chen, Jack Gerrits, Tyler Payne, Matheus Kunzler Maldaner, Madeleine Grunde-McLaughlin, Eric Zhu, Griffin Bassman, Jacob Alber, Peter Chang, Ricky Loynd, Friederike Niedtner, Ece Kamar, Maya Murad, Rafah Hosn, Saleema Amershi,
- Abstract summary: We introduce Magentic-UI, an open-source web interface for developing and studying human-agent interaction.<n>Built on a flexible multi-agent architecture, Magentic-UI supports web browsing, code execution, and file manipulation.<n>We evaluate Magentic-UI across four dimensions: autonomous task completion on agentic benchmarks, simulated user testing of its interaction capabilities, qualitative studies with real users, and targeted safety assessments.
- Score: 34.50407835250159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI agents powered by large language models are increasingly capable of autonomously completing complex, multi-step tasks using external tools. Yet, they still fall short of human-level performance in most domains including computer use, software development, and research. Their growing autonomy and ability to interact with the outside world, also introduces safety and security risks including potentially misaligned actions and adversarial manipulation. We argue that human-in-the-loop agentic systems offer a promising path forward, combining human oversight and control with AI efficiency to unlock productivity from imperfect systems. We introduce Magentic-UI, an open-source web interface for developing and studying human-agent interaction. Built on a flexible multi-agent architecture, Magentic-UI supports web browsing, code execution, and file manipulation, and can be extended with diverse tools via Model Context Protocol (MCP). Moreover, Magentic-UI presents six interaction mechanisms for enabling effective, low-cost human involvement: co-planning, co-tasking, multi-tasking, action guards, and long-term memory. We evaluate Magentic-UI across four dimensions: autonomous task completion on agentic benchmarks, simulated user testing of its interaction capabilities, qualitative studies with real users, and targeted safety assessments. Our findings highlight Magentic-UI's potential to advance safe and efficient human-agent collaboration.
Related papers
- Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web.<n>In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users.<n>We present a structured framework for understanding and building the Agentic Web.
arXiv Detail & Related papers (2025-07-28T17:58:12Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence.<n>As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges.<n>This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
We introduce TheAgentCompany, a benchmark for evaluating AI agents that interact with the world in similar ways to those of a digital worker.<n>We find that the most competitive agent can complete 30% of tasks autonomously.<n>This paints a nuanced picture on task automation with simulating LM agents in a setting a real workplace.
arXiv Detail & Related papers (2024-12-18T18:55:40Z) - Two Heads Are Better Than One: Collaborative LLM Embodied Agents for Human-Robot Interaction [1.6574413179773757]
Large language models (LLMs) should be able to leverage their large breadth of understanding to interpret natural language commands.
However, these models suffer from hallucinations, which may cause safety issues or deviations from the task.
In this research, multiple collaborative AI systems were tested against a single independent AI agent to determine whether the success in other domains would translate into improved human-robot interaction performance.
arXiv Detail & Related papers (2024-11-23T02:47:12Z) - Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks [39.084974125007165]
We introduce Magentic-One, a high-performing open-source agentic system for solving complex tasks.
Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, tracks progress, and re-plans to recover from errors.
We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks.
arXiv Detail & Related papers (2024-11-07T06:36:19Z) - HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions [76.42274173122328]
We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions.
We run 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education)
Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50% cases.
arXiv Detail & Related papers (2024-09-24T19:47:21Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - Creating Multimodal Interactive Agents with Imitation and
Self-Supervised Learning [20.02604302565522]
A common vision from science fiction is that robots will one day inhabit our physical spaces, sense the world as we do, assist our physical labours, and communicate with us through natural language.
Here we study how to design artificial agents that can interact naturally with humans using the simplification of a virtual environment.
We show that imitation learning of human-human interactions in a simulated world, in conjunction with self-supervised learning, is sufficient to produce a multimodal interactive agent, which we call MIA, that successfully interacts with non-adversarial humans 75% of the time.
arXiv Detail & Related papers (2021-12-07T15:17:27Z) - Imitating Interactive Intelligence [24.95842455898523]
We study how to design artificial agents that can interact naturally with humans using the simplification of a virtual environment.
To build agents that can robustly interact with humans, we would ideally train them while they interact with humans.
We use ideas from inverse reinforcement learning to reduce the disparities between human-human and agent-agent interactive behaviour.
arXiv Detail & Related papers (2020-12-10T13:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.