NeedleChain: Measuring Intact Long-Context Reasoning Capability of Large Language Models
- URL: http://arxiv.org/abs/2507.22411v1
- Date: Wed, 30 Jul 2025 06:29:50 GMT
- Title: NeedleChain: Measuring Intact Long-Context Reasoning Capability of Large Language Models
- Authors: Hyeonseok Moon, Heuiseok Lim,
- Abstract summary: The Needle-in-a-Haystack benchmark is widely used to evaluate Large Language Models' (LLMs) ability to understand long contexts (LC)<n>We demonstrate that even state-of-the-art models such as GPT-4o struggle to intactly incorporate given contexts made up of solely query-relevant ten sentences.<n>We introduce a novel benchmark, textbfNeedleChain, where the context consists entirely of query-relevant information.
- Score: 7.134358758293254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Needle-in-a-Haystack (NIAH) benchmark is widely used to evaluate Large Language Models' (LLMs) ability to understand long contexts (LC). It evaluates the capability to identify query-relevant context within extensive query-irrelevant passages. Although this method serves as a widely accepted standard for evaluating long-context understanding, our findings suggest it may overestimate the true LC capability of LLMs. We demonstrate that even state-of-the-art models such as GPT-4o struggle to intactly incorporate given contexts made up of solely query-relevant ten sentences. In response, we introduce a novel benchmark, \textbf{NeedleChain}, where the context consists entirely of query-relevant information, requiring the LLM to fully grasp the input to answer correctly. Our benchmark allows for flexible context length and reasoning order, offering a more comprehensive analysis of LLM performance. Additionally, we propose an extremely simple yet compelling strategy to improve LC understanding capability of LLM: ROPE Contraction. Our experiments with various advanced LLMs reveal a notable disparity between their ability to process large contexts and their capacity to fully understand them. Source code and datasets are available at https://github.com/hyeonseokk/NeedleChain
Related papers
- CNNSum: Exploring Long-Context Summarization with Large Language Models in Chinese Novels [11.614599448394374]
We introduce CNNSum, a multi-scale long-context summarization benchmark based on Chinese novels.<n>CNNSum features human-driven annotations across four subsets totaling 695 samples, with lengths ranging from 16k to 128k.<n>We benchmark numerous LLMs and conduct detailed human assessments to summarize abnormal output types.
arXiv Detail & Related papers (2024-12-03T20:35:57Z) - On Many-Shot In-Context Learning for Long-Context Evaluation [10.500629810624769]
This paper delves into long-context language model evaluation through many-shot ICL.<n>We develop metrics to categorize ICL tasks into two groups: similar-sample learning (SSL) and all-sample learning (ASL)<n>We find that while state-of-the-art models demonstrate good performance up to 64k tokens in SSL tasks, many models experience significant performance drops at only 16k tokens in ASL tasks.
arXiv Detail & Related papers (2024-11-11T17:00:59Z) - Bridging Context Gaps: Leveraging Coreference Resolution for Long Contextual Understanding [28.191029786204624]
We introduce the Long Question Coreference Adaptation (LQCA) method to enhance the performance of large language models (LLMs)<n>This framework focuses on coreference resolution tailored to long contexts, allowing the model to identify and manage references effectively.<n>Our code is public at https://github.com/OceannTwT/LQCA.
arXiv Detail & Related papers (2024-10-02T15:39:55Z) - DetectiveQA: Evaluating Long-Context Reasoning on Detective Novels [86.93099925711388]
We propose textbfDetectiveQA, a dataset specifically designed for narrative reasoning within long contexts.<n>We leverage detective novels, averaging over 100k tokens, to create a dataset containing 1200 human-annotated questions in both Chinese and English.
arXiv Detail & Related papers (2024-09-04T06:28:22Z) - NeedleBench: Can LLMs Do Retrieval and Reasoning in Information-Dense Context? [43.98513461616172]
NeedleBench is a framework for assessing retrieval and reasoning performance in long-context tasks.<n>It embeds key data points at varying depths to rigorously test model capabilities.<n>Our experiments reveal that reasoning models like Deep-R1 and OpenAI's o3 struggle with continuous retrieval and reasoning in information-dense scenarios.
arXiv Detail & Related papers (2024-07-16T17:59:06Z) - LongIns: A Challenging Long-context Instruction-based Exam for LLMs [44.51209510772957]
Long-context capabilities of large language models (LLMs) have been a hot topic in recent years.
We propose the LongIns benchmark dataset, a challenging long-context instruction-based exam for LLMs.
arXiv Detail & Related papers (2024-06-25T14:31:26Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - RepoQA: Evaluating Long Context Code Understanding [12.329233433333416]
RepoQA is a benchmark to evaluate Large Language Models (LLMs) on long-context code understanding.
RepoQA includes 500 code search tasks gathered from 50 popular repositories across 5 modern programming languages.
arXiv Detail & Related papers (2024-06-10T05:15:30Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
Large Language Models (LLMs) are effective in performing various NLP tasks, but struggle to handle tasks that require extensive, real-world knowledge.
We propose a benchmark that requires knowledge of long-tail facts for answering the involved questions.
Our experiments show that LLMs alone struggle with answering these questions, especially when the long-tail level is high or rich knowledge is required.
arXiv Detail & Related papers (2024-05-10T15:10:20Z) - Ada-LEval: Evaluating long-context LLMs with length-adaptable benchmarks [76.43527940649939]
We introduce Ada-LEval, a benchmark for evaluating the long-context understanding of large language models (LLMs)
Ada-LEval includes two challenging subsets, TSort and BestAnswer, which enable a more reliable evaluation of LLMs' long context capabilities.
We evaluate 4 state-of-the-art closed-source API models and 6 open-source models with Ada-LEval.
arXiv Detail & Related papers (2024-04-09T17:30:48Z) - When LLMs Meet Cunning Texts: A Fallacy Understanding Benchmark for Large Language Models [59.84769254832941]
We propose a FaLlacy Understanding Benchmark (FLUB) containing cunning texts that are easy for humans to understand but difficult for models to grasp.
Specifically, the cunning texts that FLUB focuses on mainly consist of the tricky, humorous, and misleading texts collected from the real internet environment.
Based on FLUB, we investigate the performance of multiple representative and advanced LLMs.
arXiv Detail & Related papers (2024-02-16T22:12:53Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - Can Large Language Models Understand Real-World Complex Instructions? [54.86632921036983]
Large language models (LLMs) can understand human instructions, but struggle with complex instructions.
Existing benchmarks are insufficient to assess LLMs' ability to understand complex instructions.
We propose CELLO, a benchmark for evaluating LLMs' ability to follow complex instructions systematically.
arXiv Detail & Related papers (2023-09-17T04:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.