From Sharp to Blur: Unsupervised Domain Adaptation for 2D Human Pose Estimation Under Extreme Motion Blur Using Event Cameras
- URL: http://arxiv.org/abs/2507.22438v1
- Date: Wed, 30 Jul 2025 07:30:40 GMT
- Title: From Sharp to Blur: Unsupervised Domain Adaptation for 2D Human Pose Estimation Under Extreme Motion Blur Using Event Cameras
- Authors: Youngho Kim, Hoonhee Cho, Kuk-Jin Yoon,
- Abstract summary: Human pose estimation is critical for applications such as rehabilitation, sports analytics, and AR/VR systems.<n>Most datasets assume stable conditions, making models trained on sharp images struggle in blurred environments.<n>We introduce a novel domain adaptation approach that leverages event cameras, which capture high temporal resolution motion data.
- Score: 47.65729940410823
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Human pose estimation is critical for applications such as rehabilitation, sports analytics, and AR/VR systems. However, rapid motion and low-light conditions often introduce motion blur, significantly degrading pose estimation due to the domain gap between sharp and blurred images. Most datasets assume stable conditions, making models trained on sharp images struggle in blurred environments. To address this, we introduce a novel domain adaptation approach that leverages event cameras, which capture high temporal resolution motion data and are inherently robust to motion blur. Using event-based augmentation, we generate motion-aware blurred images, effectively bridging the domain gap between sharp and blurred domains without requiring paired annotations. Additionally, we develop a student-teacher framework that iteratively refines pseudo-labels, leveraging mutual uncertainty masking to eliminate incorrect labels and enable more effective learning. Experimental results demonstrate that our approach outperforms conventional domain-adaptive human pose estimation methods, achieving robust pose estimation under motion blur without requiring annotations in the target domain. Our findings highlight the potential of event cameras as a scalable and effective solution for domain adaptation in real-world motion blur environments. Our project codes are available at https://github.com/kmax2001/EvSharp2Blur.
Related papers
- Image as an IMU: Estimating Camera Motion from a Single Motion-Blurred Image [14.485182089870928]
We propose a novel framework that leverages motion blur as a rich cue for motion estimation.<n>Our approach works by predicting a dense motion flow field and a monocular depth map directly from a single motion-blurred image.<n>Our method produces an IMU-like measurement that robustly captures fast and aggressive camera movements.
arXiv Detail & Related papers (2025-03-21T17:58:56Z) - Domain-adaptive Video Deblurring via Test-time Blurring [43.40607572991409]
We propose a domain adaptation scheme based on a blurring model to achieve test-time fine-tuning for deblurring models in unseen domains.
Since blurred and sharp pairs are unavailable for fine-tuning during inference, our scheme can generate domain-adaptive training pairs to calibrate a deblurring model for the target domain.
Our approach can significantly improve state-of-the-art video deblurring methods, providing performance gains of up to 7.54dB on various real-world video deblurring datasets.
arXiv Detail & Related papers (2024-07-12T07:28:01Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - Cameras as Rays: Pose Estimation via Ray Diffusion [54.098613859015856]
Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparsely sampled views.
We propose a distributed representation of camera pose that treats a camera as a bundle of rays.
Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D.
arXiv Detail & Related papers (2024-02-22T18:59:56Z) - Adaptive Window Pruning for Efficient Local Motion Deblurring [81.35217764881048]
Local motion blur commonly occurs in real-world photography due to the mixing between moving objects and stationary backgrounds during exposure.
Existing image deblurring methods predominantly focus on global deblurring.
This paper aims to adaptively and efficiently restore high-resolution locally blurred images.
arXiv Detail & Related papers (2023-06-25T15:24:00Z) - Globally-Optimal Event Camera Motion Estimation [30.79931004393174]
Event cameras are bio-inspired sensors that perform well in HDR conditions and have high temporal resolution.
Event cameras measure asynchronous pixel-level changes and return them in a highly discretised format.
arXiv Detail & Related papers (2022-03-08T08:24:22Z) - Single Image Non-uniform Blur Kernel Estimation via Adaptive Basis
Decomposition [1.854931308524932]
We propose a general, non-parametric model for dense non-uniform motion blur estimation.
We show that our method overcomes the limitations of existing non-uniform motion blur estimation.
arXiv Detail & Related papers (2021-02-01T18:02:31Z) - Event-based Motion Segmentation with Spatio-Temporal Graph Cuts [51.17064599766138]
We have developed a method to identify independently objects acquired with an event-based camera.
The method performs on par or better than the state of the art without having to predetermine the number of expected moving objects.
arXiv Detail & Related papers (2020-12-16T04:06:02Z) - Exposure Trajectory Recovery from Motion Blur [90.75092808213371]
Motion blur in dynamic scenes is an important yet challenging research topic.
In this paper, we define exposure trajectories, which represent the motion information contained in a blurry image.
A novel motion offset estimation framework is proposed to model pixel-wise displacements of the latent sharp image.
arXiv Detail & Related papers (2020-10-06T05:23:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.