Explaining Deep Network Classification of Matrices: A Case Study on Monotonicity
- URL: http://arxiv.org/abs/2507.22570v1
- Date: Wed, 30 Jul 2025 10:55:44 GMT
- Title: Explaining Deep Network Classification of Matrices: A Case Study on Monotonicity
- Authors: Leandro Farina, Sergey Korotov,
- Abstract summary: This work demonstrates a methodology for using deep learning to discover simple, practical criteria for classifying matrices.<n>By combining a high-performance neural network with explainable AI (XAI) techniques, we can distill a model's learned strategy into human-interpretable rules.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work demonstrates a methodology for using deep learning to discover simple, practical criteria for classifying matrices based on abstract algebraic properties. By combining a high-performance neural network with explainable AI (XAI) techniques, we can distill a model's learned strategy into human-interpretable rules. We apply this approach to the challenging case of monotone matrices, defined by the condition that their inverses are entrywise nonnegative. Despite their simple definition, an easy characterization in terms of the matrix elements or the derived parameters is not known. Here, we present, to the best of our knowledge, the first systematic machine-learning approach for deriving a practical criterion that distinguishes monotone from non-monotone matrices. After establishing a labelled dataset by randomly generated monotone and non-monotone matrices uniformly on $(-1,1)$, we employ deep neural network algorithms for classifying the matrices as monotone or non-monotone, using both their entries and a comprehensive set of matrix features. By saliency methods, such as integrated gradients, we identify among all features, two matrix parameters which alone provide sufficient information for the matrix classification, with $95\%$ accuracy, namely the absolute values of the two lowest-order coefficients, $c_0$ and $c_1$ of the matrix's characteristic polynomial. A data-driven study of 18,000 random $7\times7$ matrices shows that the monotone class obeys $\lvert c_{0}/c_{1}\rvert\le0.18$ with probability $>99.98\%$; because $\lvert c_{0}/c_{1}\rvert = 1/\mathrm{tr}(A^{-1})$ for monotone $A$, this is equivalent to the simple bound $\mathrm{tr}(A^{-1})\ge5.7$.
Related papers
- Spectral Estimation with Free Decompression [47.81955761814048]
We introduce a novel method of "free decompression" to estimate the spectrum of very large (impalpable) matrices.<n>Our method can be used to extrapolate from the empirical spectral densities of small submatrices to infer the eigenspectrum of extremely large (impalpable) matrices.
arXiv Detail & Related papers (2025-06-13T17:49:25Z) - Optimal Quantization for Matrix Multiplication [35.007966885532724]
We build a universal quantizer based on nested lattices with an explicit guarantee of approximation error.<n>A practical low-complexity version of our quantizer achieves performance quite close to optimal.
arXiv Detail & Related papers (2024-10-17T17:19:48Z) - One-sided Matrix Completion from Two Observations Per Row [95.87811229292056]
We propose a natural algorithm that involves imputing the missing values of the matrix $XTX$.
We evaluate our algorithm on one-sided recovery of synthetic data and low-coverage genome sequencing.
arXiv Detail & Related papers (2023-06-06T22:35:16Z) - An Equivalence Principle for the Spectrum of Random Inner-Product Kernel
Matrices with Polynomial Scalings [21.727073594338297]
This study is motivated by applications in machine learning and statistics.
We establish the weak limit of the empirical distribution of these random matrices in a scaling regime.
Our results can be characterized as the free additive convolution between a Marchenko-Pastur law and a semicircle law.
arXiv Detail & Related papers (2022-05-12T18:50:21Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
This paper uses techniques from Random Matrix Theory to find the ideal training-testing data split for a simple linear regression.
It defines "ideal" as satisfying the integrity metric, i.e. the empirical model error is the actual measurement noise.
This paper is the first to solve for the training and test size for any model in a way that is truly optimal.
arXiv Detail & Related papers (2021-12-11T13:18:33Z) - Statistical limits of dictionary learning: random matrix theory and the
spectral replica method [28.54289139061295]
We consider increasingly complex models of matrix denoising and dictionary learning in the Bayes-optimal setting.
We introduce a novel combination of the replica method from statistical mechanics together with random matrix theory, coined spectral replica method.
arXiv Detail & Related papers (2021-09-14T12:02:32Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
We present dimensionality reduction methods for non-PSD and square-roots" matrices.
We show how these techniques can be used for multiple downstream tasks.
arXiv Detail & Related papers (2021-06-16T04:07:48Z) - Analysis of One-Hidden-Layer Neural Networks via the Resolvent Method [0.0]
Motivated by random neural networks, we consider the random matrix $M = Y Yast$ with $Y = f(WX)$.
We prove that the Stieltjes transform of the limiting spectral distribution satisfies a quartic self-consistent equation up to some error terms.
In addition, we extend the previous results to the case of additive bias $Y=f(WX+B)$ with $B$ being an independent rank-one Gaussian random matrix.
arXiv Detail & Related papers (2021-05-11T15:17:39Z) - Algebraic and geometric structures inside the Birkhoff polytope [0.0]
Birkhoff polytope $mathcalB_d$ consists of all bistochastic matrices of order $d$.
We prove that $mathcalL_d$ and $mathcalF_d$ are star-shaped with respect to the flat matrix.
arXiv Detail & Related papers (2021-01-27T09:51:24Z) - Metric Transforms and Low Rank Matrices via Representation Theory of the
Real Hyperrectangle [17.808087068037985]
We show how to compute the eigenvectors and eigenvalues of certain matrices arising from hyperrectangles.
We then use our new technique along with these connections to prove several new structural results.
arXiv Detail & Related papers (2020-11-23T16:03:12Z) - Linear-Sample Learning of Low-Rank Distributions [56.59844655107251]
We show that learning $ktimes k$, rank-$r$, matrices to normalized $L_1$ distance requires $Omega(frackrepsilon2)$ samples.
We propose an algorithm that uses $cal O(frackrepsilon2log2fracepsilon)$ samples, a number linear in the high dimension, and nearly linear in the matrices, typically low, rank proofs.
arXiv Detail & Related papers (2020-09-30T19:10:32Z) - Sketching Transformed Matrices with Applications to Natural Language
Processing [76.6222695417524]
We propose a space-efficient sketching algorithm for computing the product of a given small matrix with the transformed matrix.
We show that our approach obtains small error and is efficient in both space and time.
arXiv Detail & Related papers (2020-02-23T03:07:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.