Robust Deepfake Detection for Electronic Know Your Customer Systems Using Registered Images
- URL: http://arxiv.org/abs/2507.22601v1
- Date: Wed, 30 Jul 2025 12:16:27 GMT
- Title: Robust Deepfake Detection for Electronic Know Your Customer Systems Using Registered Images
- Authors: Takuma Amada, Kazuya Kakizaki, Taiki Miyagawa, Akinori F. Ebihara, Kaede Shiohara, Toshihiko Yamasaki,
- Abstract summary: We present a deepfake detection algorithm specifically designed for electronic Know Your Customer (eKYC) systems.<n>Our approach evaluates the video's authenticity by detecting temporal inconsistencies in identity vectors extracted by face recognition models.<n>In addition to processing video input, the algorithm utilizes a registered image (assumed to be genuine) to calculate identity discrepancies.
- Score: 29.349824933680956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a deepfake detection algorithm specifically designed for electronic Know Your Customer (eKYC) systems. To ensure the reliability of eKYC systems against deepfake attacks, it is essential to develop a robust deepfake detector capable of identifying both face swapping and face reenactment, while also being robust to image degradation. We address these challenges through three key contributions: (1)~Our approach evaluates the video's authenticity by detecting temporal inconsistencies in identity vectors extracted by face recognition models, leading to comprehensive detection of both face swapping and face reenactment. (2)~In addition to processing video input, the algorithm utilizes a registered image (assumed to be genuine) to calculate identity discrepancies between the input video and the registered image, significantly improving detection accuracy. (3)~We find that employing a face feature extractor trained on a larger dataset enhances both detection performance and robustness against image degradation. Our experimental results show that our proposed method accurately detects both face swapping and face reenactment comprehensively and is robust against various forms of unseen image degradation. Our source code is publicly available https://github.com/TaikiMiyagawa/DeepfakeDetection4eKYC.
Related papers
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - A Machine Learning-Based Secure Face Verification Scheme and Its Applications to Digital Surveillance [0.9208007322096533]
Most real-world recognition systems ignore the importance of protecting the identity-sensitive facial images that are used for verification.
We use the DeepID2 convolutional neural network to extract the features of a facial image and an EM algorithm to solve the facial verification problem.
We develop three face verification systems for surveillance (or entrance) control of a local community based on three levels of privacy concerns.
arXiv Detail & Related papers (2024-10-29T12:25:00Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - TetraLoss: Improving the Robustness of Face Recognition against Morphing Attacks [6.492755549391469]
Face recognition systems are widely deployed in high-security applications.<n>Digital manipulations, such as face morphing, pose a security threat to face recognition systems.<n>We present a novel method for adapting deep learning-based face recognition systems to be more robust against face morphing attacks.
arXiv Detail & Related papers (2024-01-21T21:04:05Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - Robust Identity Perceptual Watermark Against Deepfake Face Swapping [8.276177968730549]
Deepfake face swapping has caused critical privacy issues with the rapid development of deep generative models.
We propose the first robust identity perceptual watermarking framework that concurrently performs detection and source tracing against Deepfake face swapping.
arXiv Detail & Related papers (2023-11-02T16:04:32Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy.
Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-10-18T14:49:54Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
Sequential deepfake detection aims to identify forged facial regions with the correct sequence for recovery.
The recovery of forged images requires knowledge of the manipulation model to implement inverse transformations.
We propose Multi-Collaboration and Multi-Supervision Network (MMNet) that handles various spatial scales and sequential permutations in forged face images.
arXiv Detail & Related papers (2023-07-06T02:32:08Z) - Building an Invisible Shield for Your Portrait against Deepfakes [34.65356811439098]
We propose a novel framework - Integrity Encryptor, aiming to protect portraits in a proactive strategy.
Our methodology involves covertly encoding messages that are closely associated with key facial attributes into authentic images.
The modified facial attributes serve as a mean of detecting manipulated images through a comparison of the decoded messages.
arXiv Detail & Related papers (2023-05-22T10:01:28Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
Face-swap images and videos have attracted more and more malicious attackers to discredit some key figures.
Previous pixel-level artifacts based detection techniques always focus on some unclear patterns but ignore some available semantic clues.
We propose a biometric information based method to fully exploit the appearance and shape feature for face-swap detection of key figures.
arXiv Detail & Related papers (2021-04-28T09:35:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.