Hydra-Bench: A Benchmark for Multi-Modal Leaf Wetness Sensing
- URL: http://arxiv.org/abs/2507.22685v1
- Date: Wed, 30 Jul 2025 13:47:56 GMT
- Title: Hydra-Bench: A Benchmark for Multi-Modal Leaf Wetness Sensing
- Authors: Yimeng Liu, Maolin Gan, Yidong Ren, Gen Li, Jingkai Lin, Younsuk Dong, Zhichao Cao,
- Abstract summary: We introduce a new multi-modal dataset specifically designed for evaluating and advancing machine learning algorithms in leaf wetness detection.<n>Our dataset comprises synchronized mmWave raw data, Synthetic Aperture Radar (SAR) images, and RGB images collected over six months from five diverse plant species.
- Score: 5.54739216930577
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Leaf wetness detection is a crucial task in agricultural monitoring, as it directly impacts the prediction and protection of plant diseases. However, existing sensing systems suffer from limitations in robustness, accuracy, and environmental resilience when applied to natural leaves under dynamic real-world conditions. To address these challenges, we introduce a new multi-modal dataset specifically designed for evaluating and advancing machine learning algorithms in leaf wetness detection. Our dataset comprises synchronized mmWave raw data, Synthetic Aperture Radar (SAR) images, and RGB images collected over six months from five diverse plant species in both controlled and outdoor field environments. We provide detailed benchmarks using the Hydra model, including comparisons against single modality baselines and multiple fusion strategies, as well as performance under varying scan distances. Additionally, our dataset can serve as a benchmark for future SAR imaging algorithm optimization, enabling a systematic evaluation of detection accuracy under diverse conditions.
Related papers
- Hydra: Accurate Multi-Modal Leaf Wetness Sensing with mm-Wave and Camera Fusion [6.047529821743112]
Leaf Wetness Duration (LWD) is crucial in the development of plant diseases.<n>Prior research proposes diverse approaches, but they fail to measure real natural leaves directly.<n>This paper presents Hydra, an innovative approach that integrates millimeter-wave (mm-Wave) radar with camera technology to detect leaf wetness.
arXiv Detail & Related papers (2025-08-04T13:33:06Z) - SMART-Ship: A Comprehensive Synchronized Multi-modal Aligned Remote Sensing Targets Dataset and Benchmark for Berthed Ships Analysis [12.87083600993665]
This dataset consists of 1092 multi-modal image sets, covering 38,838 ships.<n>Each image set is acquired within one week and registered to ensuretemporal consistency.<n>We define benchmarks on five fundamental tasks and compare methods across the dataset.
arXiv Detail & Related papers (2025-08-04T13:09:58Z) - CVD-SfM: A Cross-View Deep Front-end Structure-from-Motion System for Sparse Localization in Multi-Altitude Scenes [0.7623023317942882]
We present a novel multi-altitude camera pose estimation system, addressing the challenges of robust and accurate localization across varied altitudes.<n>The system effectively handles diverse environmental conditions and viewpoint variations by integrating the cross-view transformer, deep features, and structure-from-motion.
arXiv Detail & Related papers (2025-08-03T22:11:48Z) - A workflow for generating synthetic LiDAR datasets in simulation environments [0.0]
This paper presents a simulation workflow for generating synthetic LiDAR datasets to support autonomous vehicle perception, robotics research, and sensor security analysis.<n>We integrate time-of-flight LiDAR, image sensors, and two dimensional scanners onto a simulated vehicle platform operating within an urban scenario.<n>The study examines potential security vulnerabilities in LiDAR data, such as adversarial point injection and spoofing attacks, and demonstrates how synthetic datasets can facilitate the evaluation of defense strategies.
arXiv Detail & Related papers (2025-06-20T17:56:15Z) - Inland Waterway Object Detection in Multi-environment: Dataset and Approach [12.00732943849236]
This paper introduces the Multi-environment Inland Waterway Vessel dataset (MEIWVD)<n>MEIWVD comprises 32,478 high-quality images from diverse scenarios, including sunny, rainy, foggy, and artificial lighting conditions.<n>This paper proposes a scene-guided image enhancement module to improve water surface images based on environmental conditions adaptively.
arXiv Detail & Related papers (2025-04-07T08:45:00Z) - Multi-modal Multi-platform Person Re-Identification: Benchmark and Method [58.59888754340054]
MP-ReID is a novel dataset designed specifically for multi-modality and multi-platform ReID.<n>This benchmark compiles data from 1,930 identities across diverse modalities, including RGB, infrared, and thermal imaging.<n>We introduce Uni-Prompt ReID, a framework with specific-designed prompts, tailored for cross-modality and cross-platform scenarios.
arXiv Detail & Related papers (2025-03-21T12:27:49Z) - PolSAM: Polarimetric Scattering Mechanism Informed Segment Anything Model [76.95536611263356]
PolSAR data presents unique challenges due to its rich and complex characteristics.<n>Existing data representations, such as complex-valued data, polarimetric features, and amplitude images, are widely used.<n>Most feature extraction networks for PolSAR are small, limiting their ability to capture features effectively.<n>We propose the Polarimetric Scattering Mechanism-Informed SAM (PolSAM), an enhanced Segment Anything Model (SAM) that integrates domain-specific scattering characteristics and a novel prompt generation strategy.
arXiv Detail & Related papers (2024-12-17T09:59:53Z) - From Data to Insights: A Covariate Analysis of the IARPA BRIAR Dataset for Multimodal Biometric Recognition Algorithms at Altitude and Range [13.42292577384284]
This paper focuses on fused whole body biometrics performance in the IARPA BRIAR dataset, specifically focusing on UAV platforms, elevated positions, and up to 1000 meters.
The dataset includes outdoor videos compared with indoor images and controlled gait recordings.
arXiv Detail & Related papers (2024-09-03T00:58:50Z) - Challenges of YOLO Series for Object Detection in Extremely Heavy Rain:
CALRA Simulator based Synthetic Evaluation Dataset [0.0]
Object detection by diverse sensors (e.g., LiDAR, radar, and camera) should be prioritized for autonomous vehicles.
These sensors require to detect objects accurately and quickly in diverse weather conditions, but they tend to have challenges to consistently detect objects in bad weather conditions with rain, snow, or fog.
In this study, based on experimentally obtained raindrop data from precipitation conditions, we constructed a novel dataset that could test diverse network model in various precipitation conditions.
arXiv Detail & Related papers (2023-12-13T08:45:57Z) - Log-Likelihood Score Level Fusion for Improved Cross-Sensor Smartphone
Periocular Recognition [52.15994166413364]
We employ fusion of several comparators to improve periocular performance when images from different smartphones are compared.
We use a probabilistic fusion framework based on linear logistic regression, in which fused scores tend to be log-likelihood ratios.
Our framework also provides an elegant and simple solution to handle signals from different devices, since same-sensor and cross-sensor score distributions are aligned and mapped to a common probabilistic domain.
arXiv Detail & Related papers (2023-11-02T13:43:44Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Inertial Hallucinations -- When Wearable Inertial Devices Start Seeing
Things [82.15959827765325]
We propose a novel approach to multimodal sensor fusion for Ambient Assisted Living (AAL)
We address two major shortcomings of standard multimodal approaches, limited area coverage and reduced reliability.
Our new framework fuses the concept of modality hallucination with triplet learning to train a model with different modalities to handle missing sensors at inference time.
arXiv Detail & Related papers (2022-07-14T10:04:18Z) - SCAMPS: Synthetics for Camera Measurement of Physiological Signals [17.023803380199492]
We present SCAMPS, a dataset of synthetics containing 2,800 videos (1.68M frames) with aligned cardiac and respiratory signals and facial action intensities.
We provide descriptive statistics about the underlying waveforms, including inter-beat interval, heart rate variability, and pulse arrival time.
arXiv Detail & Related papers (2022-06-08T23:48:41Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
In autonomous racing, the weather can change abruptly, causing significant degradation in perception, resulting in ineffective manoeuvres.
In order to improve detection in adverse weather, deep-learning-based models typically require extensive datasets captured in such conditions.
We introduce an approach of using synthesised adverse condition datasets in autonomous racing (generated using CycleGAN) to improve the performance of four out of five state-of-the-art detectors.
arXiv Detail & Related papers (2022-01-10T10:02:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.