Gain on ground state of quantum system for truly $\mathcal{PT}$ symmetry
- URL: http://arxiv.org/abs/2507.22728v1
- Date: Wed, 30 Jul 2025 14:47:50 GMT
- Title: Gain on ground state of quantum system for truly $\mathcal{PT}$ symmetry
- Authors: Bing-Bing Liu, Shi-Lei Su,
- Abstract summary: For a truly $mathcalPT$-symmetric quantum system, the conventional non-Hermitian Hamiltonian is $H = H_rm drive -igamma|1ranglelangle1| + igamma|0ranglelangle0|$.<n>We propose a method to achieve effective gain on the ground state $|0rangle$ ($+igamma|0ranglelangle0|$) after averaging all trajectories.
- Score: 13.788223630896052
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For a truly $\mathcal{PT}$-symmetric quantum system, the conventional non-Hermitian Hamiltonian is $H = H_{\rm drive} -i\gamma|1\rangle\langle1| + i\gamma|0\rangle\langle0|$, where $\Omega$ and $\gamma$ are real parameters. The three terms respectively represent coherent coupling, loss (on state $|1\rangle$), and gain (on state $|0\rangle$). However, realizing the gain term $+i\gamma|0\rangle\langle0|$ has remained an outstanding challenge for quantum system, especially on ground state -- no theoretical or experimental schemes have definitively demonstrated its achievement. While systems omitting this gain term can exhibit a passively $\mathcal{PT}$-symmetric energy spectrum (featuring a parallel imaginary shift) and display related phenomena, they fail to capture the full physical behavior and unique properties inherent to truly $\mathcal{PT}$-symmetric systems. In this manuscript, we propose a method to achieve effective gain on the ground state $|0\rangle$ ($+i\gamma|0\rangle\langle0|$) after averaging all trajectories, by integrating the S{\o}rensen-Reiter effective operator method with the Wiseman-Milburn master equation for continuous measurement and instantaneous feedback control after averaging the evolution over all trajectories. This approach provides a possible pathway to efficiently construct truly $\mathcal{PT}$-symmetric quantum devices, offering a powerful platform for engineering quantum resources vital for quantum information technology applications.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.<n>This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.<n>We show how to lift classical slow mixing results in the presence of a transverse field using Poisson Feynman-Kac techniques.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Hybrid Oscillator-Qubit Quantum Processors: Simulating Fermions, Bosons, and Gauge Fields [31.51988323782987]
We develop a hybrid oscillator-qubit processor framework for quantum simulation of strongly correlated fermions and bosons.
This framework gives exact decompositions of particle interactions as well as approximate methods based on the Baker-Campbell Hausdorff formulas.
While our work focusses on an implementation in superconducting hardware, our framework can also be used in trapped ion, and neutral atom hardware.
arXiv Detail & Related papers (2024-09-05T17:58:20Z) - Hamiltonian simulation for low-energy states with optimal time dependence [45.02537589779136]
We consider the task of simulating time evolution under a Hamiltonian $H$ within its low-energy subspace.
We present a quantum algorithm that uses $O(tsqrtlambdaGamma + sqrtlambda/Gammalog (1/epsilon))$ queries to the block-encoding for any $Gamma$.
arXiv Detail & Related papers (2024-04-04T17:58:01Z) - Schrieffer-Wolff transformation for non-Hermitian systems: application
for $\mathcal{PT}$-symmetric circuit QED [0.0]
We develop the generalized Schrieffer-Wolff transformation and derive the effective Hamiltonian suitable for various quasi-degenerate textitnon-Hermitian systems.
We show that non-hermiticity mixes the "dark" and the "bright" states, which has a direct experimental consequence.
arXiv Detail & Related papers (2023-09-18T14:50:29Z) - Quantum Speedups for Zero-Sum Games via Improved Dynamic Gibbs Sampling [30.53587208999909]
We give a quantum algorithm for computing an $epsilon$-approximate Nash equilibrium of a zero-sum game in a $m times n$ payoff matrix with bounded entries.
Given a standard quantum oracle for accessing the payoff matrix our algorithm runs in time $widetildeO(sqrtm + ncdot epsilon-2.5 + epsilon-3)$ and outputs a classical representation of the $epsilon$-approximate Nash equilibrium.
arXiv Detail & Related papers (2023-01-10T02:56:49Z) - Quantum phase transitions in non-Hermitian
$\mathcal{P}\mathcal{T}$-symmetric transverse-field Ising spin chains [0.0]
We present a theoretical study of quantum phases and quantum phase transitions occurring in non-Hermitian $mathcalPmathcalT$-symmetric superconducting qubits chains.
A non-Hermitian part of the Hamiltonian is implemented via imaginary staggered textitlongitudinal magnetic field.
We obtain two quantum phases for $J0$, namely, $mathcalPmathcalT$-symmetry broken antiferromagnetic state and $mathcalPmathcalT$-symmetry preserved paramagnetic state
arXiv Detail & Related papers (2022-11-01T18:10:12Z) - On quantum algorithms for the Schr\"odinger equation in the
semi-classical regime [27.175719898694073]
We consider Schr"odinger's equation in the semi-classical regime.
Such a Schr"odinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics.
arXiv Detail & Related papers (2021-12-25T20:01:54Z) - Anti-$\mathcal{PT}$ Transformations And Complex Non-Hermitian
$\mathcal{PT}$-Symmetric Superpartners [1.243080988483032]
We propose a new formalism for constructing complex non-Hermitian $mathcalPT$-symmetric superpartners.
The resulting potential is an unbroken super- and parity-time ($mathcalPT$)-symmetric shape-invariant potential.
This framework allows for the unification of various areas of physics, including classical optics and quantum mechanics.
arXiv Detail & Related papers (2021-08-29T12:34:47Z) - Fermion and meson mass generation in non-Hermitian Nambu--Jona-Lasinio
models [77.34726150561087]
We investigate the effects of non-Hermiticity on interacting fermionic systems.
We do this by including non-Hermitian bilinear terms into the 3+1 dimensional Nambu--Jona-Lasinio (NJL) model.
arXiv Detail & Related papers (2021-02-02T13:56:11Z) - $\mathcal{PT}$-Symmetric Quantum Discrimination of Three States [2.011085769303415]
In a regular Hermitian quantum mechanics, the successful discrimination is possible with the probability $p 1$.
In $mathcalPT$-symmetric quantum mechanics a textitsimulated single-measurement quantum state discrimination with the success rate $p$ can be done.
We discuss the relation of our approach with the recent implementation of $mathcalPT$ symmetry on the IBM quantum processor.
arXiv Detail & Related papers (2020-12-29T18:40:32Z) - Hamiltonian operator approximation for energy measurement and ground
state preparation [23.87373187143897]
We show how to approximate the Hamiltonian operator as a sum of propagators using a differential representation.
The proposed approach, named Hamiltonian operator approximation (HOA), is designed to benefit analog quantum simulators.
arXiv Detail & Related papers (2020-09-07T18:11:00Z) - Emergent $\mathcal{PT}$ symmetry in a double-quantum-dot circuit QED
set-up [0.0]
We show that a non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot-circuit-QED set-up.
Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system.
arXiv Detail & Related papers (2020-04-16T09:08:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.