A Linear N-Point Solver for Structure and Motion from Asynchronous Tracks
- URL: http://arxiv.org/abs/2507.22733v1
- Date: Wed, 30 Jul 2025 14:53:46 GMT
- Title: A Linear N-Point Solver for Structure and Motion from Asynchronous Tracks
- Authors: Hang Su, Yunlong Feng, Daniel Gehrig, Panfeng Jiang, Ling Gao, Xavier Lagorce, Laurent Kneip,
- Abstract summary: Structure and continuous motion estimation from point correspondences is a fundamental problem in computer vision.<n>We present a unified approach for structure and linear motion estimation from 2D point correspondences with arbitrary timestamps.
- Score: 31.081278354577893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structure and continuous motion estimation from point correspondences is a fundamental problem in computer vision that has been powered by well-known algorithms such as the familiar 5-point or 8-point algorithm. However, despite their acclaim, these algorithms are limited to processing point correspondences originating from a pair of views each one representing an instantaneous capture of the scene. Yet, in the case of rolling shutter cameras, or more recently, event cameras, this synchronization breaks down. In this work, we present a unified approach for structure and linear motion estimation from 2D point correspondences with arbitrary timestamps, from an arbitrary set of views. By formulating the problem in terms of first-order dynamics and leveraging a constant velocity motion model, we derive a novel, linear point incidence relation allowing for the efficient recovery of both linear velocity and 3D points with predictable degeneracies and solution multiplicities. Owing to its general formulation, it can handle correspondences from a wide range of sensing modalities such as global shutter, rolling shutter, and event cameras, and can even combine correspondences from different collocated sensors. We validate the effectiveness of our solver on both simulated and real-world data, where we show consistent improvement across all modalities when compared to recent approaches. We believe our work opens the door to efficient structure and motion estimation from asynchronous data. Code can be found at https://github.com/suhang99/AsyncTrack-Motion-Solver.
Related papers
- 3D Trajectory Reconstruction of Moving Points Based on Asynchronous Cameras [6.9017898687323775]
Localizing moving targets is crucial for analyzing their motion characteristics and dynamic properties.<n>This paper proposes a 3D trajectory reconstruction method for point targets based on asynchronous cameras.
arXiv Detail & Related papers (2025-05-31T13:04:31Z) - MATE: Motion-Augmented Temporal Consistency for Event-based Point Tracking [58.719310295870024]
This paper presents an event-based framework for tracking any point.<n>To resolve ambiguities caused by event sparsity, a motion-guidance module incorporates kinematic vectors into the local matching process.<n>The method improves the $Survival_50$ metric by 17.9% over event-only tracking of any point baseline.
arXiv Detail & Related papers (2024-12-02T09:13:29Z) - DATAP-SfM: Dynamic-Aware Tracking Any Point for Robust Structure from Motion in the Wild [85.03973683867797]
This paper proposes a concise, elegant, and robust pipeline to estimate smooth camera trajectories and obtain dense point clouds for casual videos in the wild.
We show that the proposed method achieves state-of-the-art performance in terms of camera pose estimation even in complex dynamic challenge scenes.
arXiv Detail & Related papers (2024-11-20T13:01:16Z) - Local All-Pair Correspondence for Point Tracking [59.76186266230608]
We introduce LocoTrack, a highly accurate and efficient model designed for the task of tracking any point (TAP) across video sequences.
LocoTrack achieves unmatched accuracy on all TAP-Vid benchmarks and operates at a speed almost 6 times faster than the current state-of-the-art.
arXiv Detail & Related papers (2024-07-22T06:49:56Z) - Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
We present a novel method that estimates the time to collision using a neuromorphic event-based camera.
The proposed algorithm consists of a two-step approach for efficient and accurate geometric model fitting on event data.
Experiments on both synthetic and real data demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-07-10T02:37:36Z) - A 5-Point Minimal Solver for Event Camera Relative Motion Estimation [47.45081895021988]
We introduce a novel minimal 5-point solver that estimates line parameters and linear camera velocity projections, which can be fused into a single, averaged linear velocity when considering multiple lines.
Our method consistently achieves a 100% success rate in estimating linear velocity where existing closed-form solvers only achieve between 23% and 70%.
arXiv Detail & Related papers (2023-09-29T08:30:18Z) - Asynchronous Optimisation for Event-based Visual Odometry [53.59879499700895]
Event cameras open up new possibilities for robotic perception due to their low latency and high dynamic range.
We focus on event-based visual odometry (VO)
We propose an asynchronous structure-from-motion optimisation back-end.
arXiv Detail & Related papers (2022-03-02T11:28:47Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
We present SyNoRiM, a novel way to register multiple non-rigid shapes by synchronizing the maps relating learned functions defined on the point clouds.
We demonstrate via extensive experiments that our method achieves a state-of-the-art performance in registration accuracy.
arXiv Detail & Related papers (2021-11-25T02:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.