Label-free estimation of clinically relevant performance metrics under distribution shifts
- URL: http://arxiv.org/abs/2507.22776v1
- Date: Wed, 30 Jul 2025 15:37:58 GMT
- Title: Label-free estimation of clinically relevant performance metrics under distribution shifts
- Authors: Tim Flühmann, Alceu Bissoto, Trung-Dung Hoang, Lisa M. Koch,
- Abstract summary: We introduce generalisations of existing performance prediction methods that directly estimate the full confusion matrix.<n>We benchmark their performance on chest x-ray data in real-world distribution shifts.<n>Our simulated shift scenarios exposed important failure modes of current performance estimation techniques.
- Score: 3.8961057201295244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Performance monitoring is essential for safe clinical deployment of image classification models. However, because ground-truth labels are typically unavailable in the target dataset, direct assessment of real-world model performance is infeasible. State-of-the-art performance estimation methods address this by leveraging confidence scores to estimate the target accuracy. Despite being a promising direction, the established methods mainly estimate the model's accuracy and are rarely evaluated in a clinical domain, where strong class imbalances and dataset shifts are common. Our contributions are twofold: First, we introduce generalisations of existing performance prediction methods that directly estimate the full confusion matrix. Then, we benchmark their performance on chest x-ray data in real-world distribution shifts as well as simulated covariate and prevalence shifts. The proposed confusion matrix estimation methods reliably predicted clinically relevant counting metrics on medical images under distribution shifts. However, our simulated shift scenarios exposed important failure modes of current performance estimation techniques, calling for a better understanding of real-world deployment contexts when implementing these performance monitoring techniques for postmarket surveillance of medical AI models.
Related papers
- Safeguarding AI in Medical Imaging: Post-Hoc Out-of-Distribution Detection with Normalizing Flows [3.3968168503957625]
Current OOD detection methods demand impractical retraining or modifications to pre-trained models.<n>We propose a post-hoc normalizing flow-based approach that seamlessly integrates with existing pre-trained models.<n>Our method achieved an AUROC of 84.61%, outperforming state-of-the-art methods like ViM (80.65%) and MDS (80.87%)
arXiv Detail & Related papers (2025-02-17T10:31:24Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Evaluating Predictive Uncertainty and Robustness to Distributional Shift
Using Real World Data [0.0]
We propose metrics for general regression tasks using the Shifts Weather Prediction dataset.
We also present an evaluation of the baseline methods using these metrics.
arXiv Detail & Related papers (2021-11-08T17:32:10Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Evaluating Model Robustness and Stability to Dataset Shift [7.369475193451259]
We propose a framework for analyzing stability of machine learning models.
We use the original evaluation data to determine distributions under which the algorithm performs poorly.
We estimate the algorithm's performance on the "worst-case" distribution.
arXiv Detail & Related papers (2020-10-28T17:35:39Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Uncertainty estimation for classification and risk prediction on medical
tabular data [0.0]
This work advances the understanding of uncertainty estimation for classification and risk prediction on medical data.
In a data-scarce field such as healthcare, the ability to measure the uncertainty of a model's prediction could potentially lead to improved effectiveness of decision support tools.
arXiv Detail & Related papers (2020-04-13T08:46:41Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.