Federated Learning on Riemannian Manifolds: A Gradient-Free Projection-Based Approach
- URL: http://arxiv.org/abs/2507.22855v1
- Date: Wed, 30 Jul 2025 17:24:27 GMT
- Title: Federated Learning on Riemannian Manifolds: A Gradient-Free Projection-Based Approach
- Authors: Hongye Wang, Zhaoye Pan, Chang He, Jiaxiang Li, Bo Jiang,
- Abstract summary: Federated learning (FL) has emerged as a powerful paradigm for collaborative model training across distributed clients.<n>Existing FL algorithms predominantly focus on unconstrained optimization problems with exact gradient information.
- Score: 5.33725915743382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has emerged as a powerful paradigm for collaborative model training across distributed clients while preserving data privacy. However, existing FL algorithms predominantly focus on unconstrained optimization problems with exact gradient information, limiting its applicability in scenarios where only noisy function evaluations are accessible or where model parameters are constrained. To address these challenges, we propose a novel zeroth-order projection-based algorithm on Riemannian manifolds for FL. By leveraging the projection operator, we introduce a computationally efficient zeroth-order Riemannian gradient estimator. Unlike existing estimators, ours requires only a simple Euclidean random perturbation, eliminating the need to sample random vectors in the tangent space, thus reducing computational cost. Theoretically, we first prove the approximation properties of the estimator and then establish the sublinear convergence of the proposed algorithm, matching the rate of its first-order counterpart. Numerically, we first assess the efficiency of our estimator using kernel principal component analysis. Furthermore, we apply the proposed algorithm to two real-world scenarios: zeroth-order attacks on deep neural networks and low-rank neural network training to validate the theoretical findings.
Related papers
- Understanding Inverse Reinforcement Learning under Overparameterization: Non-Asymptotic Analysis and Global Optimality [52.906438147288256]
We show that our algorithm can identify the globally optimal reward and policy under certain neural network structures.<n>This is the first IRL algorithm with a non-asymptotic convergence guarantee that provably achieves global optimality.
arXiv Detail & Related papers (2025-03-22T21:16:08Z) - Eliminating Ratio Bias for Gradient-based Simulated Parameter Estimation [0.7673339435080445]
This article addresses the challenge of parameter calibration in models where the likelihood function is not analytically available.
We propose a gradient-based simulated parameter estimation framework, leveraging a multi-time scale that tackles the issue of ratio bias in both maximum likelihood estimation and posterior density estimation problems.
arXiv Detail & Related papers (2024-11-20T02:46:15Z) - An Asymptotically Optimal Coordinate Descent Algorithm for Learning Bayesian Networks from Gaussian Models [6.54203362045253]
We study the problem of learning networks from continuous observational data, generated according to a linear Gaussian structural equation model.
We propose a new coordinate descent algorithm that converges to the optimal objective value of the $ell$penalized maximum likelihood.
arXiv Detail & Related papers (2024-08-21T20:18:03Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent [7.6860514640178]
We propose a novel zeroth-order optimization algorithm for distributed reinforcement learning.
It allows each agent to estimate its local gradient by cost evaluation independently, without use of any consensus protocol.
arXiv Detail & Related papers (2021-07-26T18:11:07Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Guiding Neural Network Initialization via Marginal Likelihood
Maximization [0.9137554315375919]
We leverage the relationship between neural network and Gaussian process models having corresponding activation and covariance functions to infer the hyper- parameter values.
Our experiment shows that marginal consistency provides recommendations that yield near-optimal prediction performance on MNIST classification task.
arXiv Detail & Related papers (2020-12-17T21:46:09Z) - Learning Minimax Estimators via Online Learning [55.92459567732491]
We consider the problem of designing minimax estimators for estimating parameters of a probability distribution.
We construct an algorithm for finding a mixed-case Nash equilibrium.
arXiv Detail & Related papers (2020-06-19T22:49:42Z) - Stochastic Zeroth-order Riemannian Derivative Estimation and
Optimization [15.78743548731191]
We propose an oracle version of the Gaussian smoothing function to overcome the difficulty of non-linearity of manifold non-linearity.
We demonstrate the applicability of our algorithms by results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks.
arXiv Detail & Related papers (2020-03-25T06:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.