Predicting stock prices with ChatGPT-annotated Reddit sentiment
- URL: http://arxiv.org/abs/2507.22922v1
- Date: Mon, 21 Jul 2025 14:56:38 GMT
- Title: Predicting stock prices with ChatGPT-annotated Reddit sentiment
- Authors: Mateusz Kmak, Kamil Chmurzyński, Kamil Matejuk, Paweł Kotzbach, Jan Kocoń,
- Abstract summary: This paper explores whether sentiment derived from social media discussions can meaningfully predict stock market movements.<n>We focus on Reddit's r/wallstreetbets and analyze sentiment related to two companies: GameStop (GME) and AMC Entertainment (AMC)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The surge of retail investor activity on social media, exemplified by the 2021 GameStop short squeeze, raised questions about the influence of online sentiment on stock prices. This paper explores whether sentiment derived from social media discussions can meaningfully predict stock market movements. We focus on Reddit's r/wallstreetbets and analyze sentiment related to two companies: GameStop (GME) and AMC Entertainment (AMC). To assess sentiment's role, we employ two existing text-based sentiment analysis methods and introduce a third, a ChatGPT-annotated and fine-tuned RoBERTa-based model designed to better interpret the informal language and emojis prevalent in social media discussions. We use correlation and causality metrics to determine these models' predictive power. Surprisingly, our findings suggest that social media sentiment has only a weak correlation with stock prices. At the same time, simpler metrics, such as the volume of comments and Google search trends, exhibit stronger predictive signals. These results highlight the complexity of retail investor behavior and suggest that traditional sentiment analysis may not fully capture the nuances of market-moving online discussions.
Related papers
- Emoji Driven Crypto Assets Market Reactions [0.21847754147782888]
We leverage GPT-4 and a fine-tuned transformer-based BERT model for a multimodal sentiment analysis.
We correlate these insights with key market indicators like BTC Price and the VCRIX index.
Our findings suggest that strategies based on emoji sentiment can facilitate the avoidance of significant market downturns.
arXiv Detail & Related papers (2024-02-16T07:05:49Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Taureau: A Stock Market Movement Inference Framework Based on Twitter
Sentiment Analysis [0.0]
We propose Taureau, a framework that leverages Twitter sentiment analysis for predicting stock market movement.
We first utilize Tweepy and getOldTweets to obtain historical tweets indicating public opinions for a set of top companies.
We correlate the temporal dimensions of the obtained sentiment scores with monthly stock price movement data.
arXiv Detail & Related papers (2023-03-30T19:12:08Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
We propose a deep architecture for depression detection from social media posts.
We incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme.
The inclusion of the proposed features yields state-of-the-art results in both settings.
arXiv Detail & Related papers (2023-03-24T21:26:27Z) - The Battle of Information Representations: Comparing Sentiment and
Semantic Features for Forecasting Market Trends [0.5249805590164902]
We study whether semantic features in the form of contextual embeddings are more valuable than sentiment attributes for forecasting market trends.
We consider the corpus of Twitter posts related to the largest companies by capitalization from NASDAQ and their close prices.
Our results show that in the substantially prevailing number of cases, the use of sentiment features leads to higher metrics.
arXiv Detail & Related papers (2023-03-24T18:30:15Z) - Evaluating Impact of Social Media Posts by Executives on Stock Prices [0.5429166905724048]
Social media like Twitter, Reddit have become hotspots of such influences.
This paper investigates the impact of social media posts on close price prediction of stocks using Twitter and Reddit posts.
arXiv Detail & Related papers (2022-11-01T03:45:17Z) - A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools
Stock Prediction [100.9772316028191]
In this paper, we experiment with a variety of adversarial attack configurations to fool three stock prediction victim models.
Our results show that the proposed attack method can achieve consistent success rates and cause significant monetary loss in trading simulation.
arXiv Detail & Related papers (2022-05-01T05:12:22Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - LSTM Based Sentiment Analysis for Cryptocurrency Prediction [11.811501670389935]
This research is directed to predicting the volatile price movement of cryptocurrency by analyzing the sentiment in social media.
We propose a method to identify the sentiment of the Chinese social media posts from the most popular Chinese social media platform Sina-Weibo.
We develop the pipeline to capture Weibo posts, describe the creation of the crypto-specific sentiment dictionary, and propose a long short-term memory (LSTM) based recurrent neural network.
arXiv Detail & Related papers (2021-03-27T04:08:37Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
We introduce an operational definition of echo chambers and perform a massive comparative analysis on 1B pieces of contents produced by 1M users on four social media platforms.
We infer the leaning of users about controversial topics and reconstruct their interaction networks by analyzing different features.
We find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
arXiv Detail & Related papers (2020-04-20T20:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.