KLLM: Fast LLM Inference with K-Means Quantization
- URL: http://arxiv.org/abs/2507.23035v2
- Date: Sun, 03 Aug 2025 20:01:17 GMT
- Title: KLLM: Fast LLM Inference with K-Means Quantization
- Authors: Xueying Wu, Baijun Zhou, Zhihui Gao, Yuzhe Fu, Qilin Zheng, Yintao He, Hai Li,
- Abstract summary: We propose KLLM, an inference accelerator for efficient execution with K-Means-quantized weights and activations.<n> KLLM features an index-based computation scheme for efficient execution of MatMuls and nonlinear operations on K-Means-quantized data.
- Score: 3.908972931500163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model (LLM) inference poses significant challenges due to its intensive memory and computation demands. Weight and activation quantization (WAQ) offers a promising solution by reducing both memory footprint and arithmetic complexity. Traditional WAQ designs rely on uniform integer quantization for hardware efficiency, but often suffer from significant model performance degradation at low precision. In contrast, K-Means quantization, a non-uniform technique, achieves higher accuracy by aligning with the Gaussian-like distributions of weights and activations in LLMs. However, two key challenges prevent the efficient deployment of K-Means-based WAQ designs for LLM inference: (1) The non-uniform structure of K-Means-quantized data precludes direct execution on low-precision compute units, necessitating dequantization and floating-point matrix multiplications (MatMuls) during inference. (2) Activation outliers hinder effective low-precision quantization. Offline thresholding methods for outlier detection degrade model performance substantially, while existing online detection techniques introduce significant runtime overhead. To address the aforementioned challenges and fully unleash the potential of K-Means-based WAQ for LLM inference, in this paper, we propose KLLM, an LLM inference accelerator for efficient execution with K-Means-quantized weights and activations. KLLM features an index-based computation scheme for efficient execution of MatMuls and nonlinear operations on K-Means-quantized data, which avoids most of the dequantization and full-precision computations. Moreover, KLLM incorporates a lightweight outlier detection engine, Orizuru, that efficiently identifies the top-$k$ largest and smallest elements in the activation data stream during online inference.
Related papers
- FineQ: Software-Hardware Co-Design for Low-Bit Fine-Grained Mixed-Precision Quantization of LLMs [13.951330786310262]
FineQ is a software- hardware co-design for low-bit fine-grained mixed-precision quantization of large language models.<n>It partitions the weights into finer-grained clusters and considers the distribution of outliers within these clusters.<n>It achieves higher model accuracy compared to the SOTA mixed-precision quantization algorithm at a close average bit-width.
arXiv Detail & Related papers (2025-04-28T12:47:23Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [53.571195477043496]
We propose an algorithm named Rotated Straight-Through-Estimator (RoSTE)<n>RoSTE combines quantization-aware supervised fine-tuning (QA-SFT) with an adaptive rotation strategy to reduce activation outliers.<n>Our findings reveal that the prediction error is directly proportional to the quantization error of the converged weights, which can be effectively managed through an optimized rotation configuration.
arXiv Detail & Related papers (2025-02-13T06:44:33Z) - Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
We present a "line theoremarity" establishing a direct relationship between the layer-wise $ell$ reconstruction error and the model perplexity increase due to quantization.
This insight enables two novel applications: (1) a simple data-free LLM quantization method using Hadamard rotations and MSE-optimal grids, dubbed HIGGS, and (2) an optimal solution to the problem of finding non-uniform per-layer quantization levels.
arXiv Detail & Related papers (2024-11-26T15:35:44Z) - MixPE: Quantization and Hardware Co-design for Efficient LLM Inference [16.42907854119748]
MixPE is a specialized mixed-precision processing element designed for efficient low-bit quantization in large language models.
We show that MixPE surpasses the state-of-the-art quantization accelerators by $2.6times$ speedup and $1.4times$ energy reduction.
arXiv Detail & Related papers (2024-11-25T07:34:53Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control.
We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
arXiv Detail & Related papers (2024-10-07T23:38:58Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
Large language models (LLMs) demonstrate outstanding performance in various tasks in machine learning.
deploying LLM inference poses challenges due to the high compute and memory requirements.
We present Tender, an algorithm-hardware co-design solution that enables efficient deployment of LLM inference at low precision.
arXiv Detail & Related papers (2024-06-16T09:51:55Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [63.118592279833656]
Post-training quantization (PTQ) is an effective technique for compressing large language models (LLMs)<n>We propose SliM-LLM, a salience-driven mixed-precision quantization framework that allocates bit-widths at the group-wise.<n> Experiments show that SliM-LLM achieves superior performance across various LLMs at low bit-widths.
arXiv Detail & Related papers (2024-05-23T16:21:48Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
Quantization, a key compression technique, can effectively mitigate these demands by compressing and accelerating large language models.
We present LLMC, a plug-and-play compression toolkit, to fairly and systematically explore the impact of quantization.
Powered by this versatile toolkit, our benchmark covers three key aspects: calibration data, algorithms (three strategies), and data formats.
arXiv Detail & Related papers (2024-05-09T11:49:05Z) - PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks [4.827161693957252]
Non-quantized elementwise operations dominate the inference cost of low-precision models.
PikeLPN model addresses these issues by applying quantization to both elementwise operations and multiply-accumulate operations.
arXiv Detail & Related papers (2024-03-29T18:23:34Z) - WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More [55.0856305773081]
Large Language Models (LLMs) face significant deployment challenges due to their substantial memory requirements and the computational demands of auto-regressive text generation process.
This paper addresses these challenges by focusing on the quantization of LLMs, a technique that reduces memory consumption by converting model parameters and activations into low-bit integers.
arXiv Detail & Related papers (2024-02-19T11:33:21Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
Large language models (LLMs) have significantly advanced the field of natural language processing.
Existing ultra-low-bit quantization always causes severe accuracy drops.
We propose a novel Dual-Binarization method for LLMs, namely DB-LLM.
arXiv Detail & Related papers (2024-02-19T09:04:30Z) - CBQ: Cross-Block Quantization for Large Language Models [66.82132832702895]
Post-training quantization (PTQ) has played a key role in compressing large language models (LLMs) with ultra-low costs.<n>We propose CBQ, a cross-block reconstruction-based PTQ method for LLMs.<n> CBQ employs a cross-block dependency using a reconstruction scheme, establishing long-range dependencies across multiple blocks to minimize error accumulation.
arXiv Detail & Related papers (2023-12-13T07:56:27Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
Large Language Models (LLMs) have achieved state-of-the-art performance across various language tasks but pose challenges for practical deployment.
We propose an efficient weight-only quantization method that reduces memory consumption and accelerates inference for LLMs.
We evaluate our approach on large-scale open source models such as OPT-175B and internal MoE models, showcasing minimal accuracy loss while achieving up to 3.65 times higher throughput.
arXiv Detail & Related papers (2023-08-16T23:57:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.