VMatcher: State-Space Semi-Dense Local Feature Matching
- URL: http://arxiv.org/abs/2507.23371v1
- Date: Thu, 31 Jul 2025 09:39:16 GMT
- Title: VMatcher: State-Space Semi-Dense Local Feature Matching
- Authors: Ali Youssef,
- Abstract summary: VMatcher is a hybrid Mamba-Transformer network for semi-dense feature matching between image pairs.<n>VMatcher integrates Mamba's highly efficient long-sequence processing with the Transformer's attention mechanism.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces VMatcher, a hybrid Mamba-Transformer network for semi-dense feature matching between image pairs. Learning-based feature matching methods, whether detector-based or detector-free, achieve state-of-the-art performance but depend heavily on the Transformer's attention mechanism, which, while effective, incurs high computational costs due to its quadratic complexity. In contrast, Mamba introduces a Selective State-Space Model (SSM) that achieves comparable or superior performance with linear complexity, offering significant efficiency gains. VMatcher leverages a hybrid approach, integrating Mamba's highly efficient long-sequence processing with the Transformer's attention mechanism. Multiple VMatcher configurations are proposed, including hierarchical architectures, demonstrating their effectiveness in setting new benchmarks efficiently while ensuring robustness and practicality for real-time applications where rapid inference is crucial. Source Code is available at: https://github.com/ayoussf/VMatcher
Related papers
- JamMa: Ultra-lightweight Local Feature Matching with Joint Mamba [8.878053726388075]
We propose an ultra-lightweight Mamba-based matcher, named JamMa, which converges on a single GPU and achieves an impressive performance-efficiency balance in inference.<n>To unlock the potential of Mamba for feature matching, we propose Joint Mamba with a scan-merge strategy named JEGO, which enables: (1) Joint scan of two images to achieve high-frequency mutual interaction, (2) Efficient scan with skip steps to reduce sequence length, (3) Global receptive field, and (4) Omnidirectional feature representation.
arXiv Detail & Related papers (2025-03-05T12:12:51Z) - ContextFormer: Redefining Efficiency in Semantic Segmentation [48.81126061219231]
Convolutional methods, although capturing local dependencies well, struggle with long-range relationships.<n>Vision Transformers (ViTs) excel in global context capture but are hindered by high computational demands.<n>We propose ContextFormer, a hybrid framework leveraging the strengths of CNNs and ViTs in the bottleneck to balance efficiency, accuracy, and robustness for real-time semantic segmentation.
arXiv Detail & Related papers (2025-01-31T16:11:04Z) - Efficient Self-Supervised Video Hashing with Selective State Spaces [63.83300352372051]
Self-supervised video hashing (SSVH) is a practical task in video indexing and retrieval.<n>We introduce S5VH, a Mamba-based video hashing model with an improved self-supervised learning paradigm.
arXiv Detail & Related papers (2024-12-19T04:33:22Z) - CARE Transformer: Mobile-Friendly Linear Visual Transformer via Decoupled Dual Interaction [77.8576094863446]
We propose a new detextbfCoupled dutextbfAl-interactive lineatextbfR atttextbfEntion (CARE) mechanism.
We first propose an asymmetrical feature decoupling strategy that asymmetrically decouples the learning process for local inductive bias and long-range dependencies.
By adopting a decoupled learning way and fully exploiting complementarity across features, our method can achieve both high efficiency and accuracy.
arXiv Detail & Related papers (2024-11-25T07:56:13Z) - MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like
Speed [42.861344584752]
Previous detector-free matcher LoFTR has shown remarkable matching capability in handling large-viewpoint change and texture-poor scenarios.
We revisit its design choices and derive multiple improvements for both efficiency and accuracy.
Our method can achieve higher accuracy compared with competitive semi-dense matchers.
arXiv Detail & Related papers (2024-03-07T18:58:40Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - ParaFormer: Parallel Attention Transformer for Efficient Feature
Matching [8.552303361149612]
This paper proposes a novel parallel attention model entitled ParaFormer.
It fuses features and keypoint positions through the concept of amplitude and phase, and integrates self- and cross-attention in a parallel manner.
Experiments on various applications, including homography estimation, pose estimation, and image matching, demonstrate that ParaFormer achieves state-of-the-art performance.
The efficient ParaFormer-U variant achieves comparable performance with less than 50% FLOPs of the existing attention-based models.
arXiv Detail & Related papers (2023-03-02T03:29:16Z) - ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement [80.94378602238432]
We propose an efficient structure named Correspondence Efficient Transformer (ECO-TR) by finding correspondences in a coarse-to-fine manner.
To achieve this, multiple transformer blocks are stage-wisely connected to gradually refine the predicted coordinates.
Experiments on various sparse and dense matching tasks demonstrate the superiority of our method in both efficiency and effectiveness against existing state-of-the-arts.
arXiv Detail & Related papers (2022-09-25T13:05:33Z) - Efficient Linear Attention for Fast and Accurate Keypoint Matching [0.9699586426043882]
Recently Transformers have provided state-of-the-art performance in sparse matching, crucial to realize high-performance 3D vision applications.
Yet, these Transformers lack efficiency due to the quadratic computational complexity of their attention mechanism.
We propose a new attentional aggregation that achieves high accuracy by aggregating both the global and local information from sparse keypoints.
arXiv Detail & Related papers (2022-04-16T06:17:36Z) - Pruning Self-attentions into Convolutional Layers in Single Path [89.55361659622305]
Vision Transformers (ViTs) have achieved impressive performance over various computer vision tasks.
We propose Single-Path Vision Transformer pruning (SPViT) to efficiently and automatically compress the pre-trained ViTs.
Our SPViT can trim 52.0% FLOPs for DeiT-B and get an impressive 0.6% top-1 accuracy gain simultaneously.
arXiv Detail & Related papers (2021-11-23T11:35:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.