Beyond Gloss: A Hand-Centric Framework for Gloss-Free Sign Language Translation
- URL: http://arxiv.org/abs/2507.23575v1
- Date: Thu, 31 Jul 2025 14:06:07 GMT
- Title: Beyond Gloss: A Hand-Centric Framework for Gloss-Free Sign Language Translation
- Authors: Sobhan Asasi, Mohamed Ilyas Lakhal, Ozge Mercanoglu Sincan, Richard Bowden,
- Abstract summary: Sign Language Translation (SLT) is a challenging task that requires bridging the modality gap between visual and linguistic information.<n>We introduce textbfBeyondGloss, a novel gloss-free SLT framework that leverages thetemporal-aware reasoning capabilities of VideoLLMs.<n>Beyondtexttext achieves state-of-the-art performance on the PhoenixT14 and CSL-Daily benchmarks, demonstrating the effectiveness of the proposed framework.
- Score: 27.269988311306374
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sign Language Translation (SLT) is a challenging task that requires bridging the modality gap between visual and linguistic information while capturing subtle variations in hand shapes and movements. To address these challenges, we introduce \textbf{BeyondGloss}, a novel gloss-free SLT framework that leverages the spatio-temporal reasoning capabilities of Video Large Language Models (VideoLLMs). Since existing VideoLLMs struggle to model long videos in detail, we propose a novel approach to generate fine-grained, temporally-aware textual descriptions of hand motion. A contrastive alignment module aligns these descriptions with video features during pre-training, encouraging the model to focus on hand-centric temporal dynamics and distinguish signs more effectively. To further enrich hand-specific representations, we distill fine-grained features from HaMeR. Additionally, we apply a contrastive loss between sign video representations and target language embeddings to reduce the modality gap in pre-training. \textbf{BeyondGloss} achieves state-of-the-art performance on the Phoenix14T and CSL-Daily benchmarks, demonstrating the effectiveness of the proposed framework. We will release the code upon acceptance of the paper.
Related papers
- Hierarchical Feature Alignment for Gloss-Free Sign Language Translation [29.544715933336715]
Sign Language Translation attempts to convert sign language videos into spoken sentences.<n>Existing methods struggle with disparity between visual and textual representations during end-to-end learning.<n>We introduce a novel hierarchical pre-training strategy inspired by the structure of sign language, incorporating pseudo-glosses and contrastive video-language alignment.
arXiv Detail & Related papers (2025-07-09T10:45:50Z) - Decoupled Visual Interpretation and Linguistic Reasoning for Math Problem Solving [57.22004912994658]
Current large vision-language models (LVLMs) typically employ a connector module to link visual features with text embeddings of large language models (LLMs)<n>This paper proposes a paradigm shift: instead of training end-to-end vision-language reasoning models, we advocate for developing a decoupled reasoning framework.
arXiv Detail & Related papers (2025-05-23T08:18:00Z) - SMILE: Infusing Spatial and Motion Semantics in Masked Video Learning [50.98341607245458]
Masked video modeling is an effective paradigm for video self-supervised learning (SSL)<n>This paper introduces a novel SSL approach for video representation learning, dubbed as SMILE, by infusing both spatial and motion semantics.<n>We establish a new self-supervised video learning paradigm capable of learning strong video representations without requiring any natural video data.
arXiv Detail & Related papers (2025-04-01T08:20:55Z) - Pose-Guided Fine-Grained Sign Language Video Generation [18.167413937989867]
We propose a novel Pose-Guided Motion Model (PGMM) for generating fine-grained and motion-consistent sign language videos.
Firstly, we propose a new Coarse Motion Module (CMM), which completes the deformation of features by optical flow warping.
Secondly, we propose a new Pose Fusion Module (PFM), which guides the modal fusion of RGB and pose features.
arXiv Detail & Related papers (2024-09-25T07:54:53Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - Vamos: Versatile Action Models for Video Understanding [23.631145570126268]
We propose versatile action models (Vamos), a learning framework powered by a large language model as the reasoner''
We evaluate Vamos on five benchmarks, Ego4D, NeXT-QA, IntentQA, Spacewalk-18, and Ego on its capability to model temporal dynamics, encode visual history, and perform reasoning.
arXiv Detail & Related papers (2023-11-22T17:44:24Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoM is a fast adaptive framework that leverages Large Language Models (LLMs) to reason about videos using lightweight visual tools.
An InsOVER algorithm locates the corresponding video events based on an efficient Hungarian matching between decompositions of linguistic instructions and video events.
arXiv Detail & Related papers (2023-10-16T17:05:56Z) - Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization [52.935150075484074]
We introduce a well-designed visual tokenizer to translate the non-linguistic image into a sequence of discrete tokens like a foreign language.
The resulting visual tokens encompass high-level semantics worthy of a word and also support dynamic sequence length varying from the image.
This unification empowers LaVIT to serve as an impressive generalist interface to understand and generate multi-modal content simultaneously.
arXiv Detail & Related papers (2023-09-09T03:01:38Z) - ViLTA: Enhancing Vision-Language Pre-training through Textual
Augmentation [35.05755930636518]
We propose ViLTA, comprising of two components to further facilitate the model to learn fine-grained representations among image-text pairs.
For Masked Language Modeling (MLM), we propose a cross-distillation method to generate soft labels to enhance the robustness of model.
For Image-Text Matching (ITM), we leverage the current language encoder to synthesize hard negatives based on the context of language input.
arXiv Detail & Related papers (2023-08-31T12:46:36Z) - Gloss Attention for Gloss-free Sign Language Translation [60.633146518820325]
We show how gloss annotations make sign language translation easier.
We then propose emphgloss attention, which enables the model to keep its attention within video segments that have the same semantics locally.
Experimental results on multiple large-scale sign language datasets show that our proposed GASLT model significantly outperforms existing methods.
arXiv Detail & Related papers (2023-07-14T14:07:55Z) - Object Relational Graph with Teacher-Recommended Learning for Video
Captioning [92.48299156867664]
We propose a complete video captioning system including both a novel model and an effective training strategy.
Specifically, we propose an object relational graph (ORG) based encoder, which captures more detailed interaction features to enrich visual representation.
Meanwhile, we design a teacher-recommended learning (TRL) method to make full use of the successful external language model (ELM) to integrate the abundant linguistic knowledge into the caption model.
arXiv Detail & Related papers (2020-02-26T15:34:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.