MoGA: 3D Generative Avatar Prior for Monocular Gaussian Avatar Reconstruction
- URL: http://arxiv.org/abs/2507.23597v2
- Date: Sat, 02 Aug 2025 08:22:12 GMT
- Title: MoGA: 3D Generative Avatar Prior for Monocular Gaussian Avatar Reconstruction
- Authors: Zijian Dong, Longteng Duan, Jie Song, Michael J. Black, Andreas Geiger,
- Abstract summary: MoGA is a novel method to reconstruct high-fidelity 3D Gaussian avatars from a single-view image.<n>Our method surpasses state-of-the-art techniques and generalizes well to real-world scenarios.
- Score: 65.5412504339528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present MoGA, a novel method to reconstruct high-fidelity 3D Gaussian avatars from a single-view image. The main challenge lies in inferring unseen appearance and geometric details while ensuring 3D consistency and realism. Most previous methods rely on 2D diffusion models to synthesize unseen views; however, these generated views are sparse and inconsistent, resulting in unrealistic 3D artifacts and blurred appearance. To address these limitations, we leverage a generative avatar model, that can generate diverse 3D avatars by sampling deformed Gaussians from a learned prior distribution. Due to limited 3D training data, such a 3D model alone cannot capture all image details of unseen identities. Consequently, we integrate it as a prior, ensuring 3D consistency by projecting input images into its latent space and enforcing additional 3D appearance and geometric constraints. Our novel approach formulates Gaussian avatar creation as model inversion by fitting the generative avatar to synthetic views from 2D diffusion models. The generative avatar provides an initialization for model fitting, enforces 3D regularization, and helps in refining pose. Experiments show that our method surpasses state-of-the-art techniques and generalizes well to real-world scenarios. Our Gaussian avatars are also inherently animatable. For code, see https:// zj-dong.github.io/ MoGA/.
Related papers
- AdaHuman: Animatable Detailed 3D Human Generation with Compositional Multiview Diffusion [56.12859795754579]
AdaHuman is a novel framework that generates high-fidelity animatable 3D avatars from a single in-the-wild image.<n>AdaHuman incorporates two key innovations: a pose-conditioned 3D joint diffusion model and a compositional 3DGS refinement module.
arXiv Detail & Related papers (2025-05-30T17:59:54Z) - 3D$^2$-Actor: Learning Pose-Conditioned 3D-Aware Denoiser for Realistic Gaussian Avatar Modeling [37.11454674584874]
We introduce 3D$2$-Actor, a pose-conditioned 3D-aware human modeling pipeline that integrates 2D denoising and 3D rectifying steps.<n> Experimental results demonstrate that 3D$2$-Actor excels in high-fidelity avatar modeling and robustly generalizes to novel poses.
arXiv Detail & Related papers (2024-12-16T09:37:52Z) - Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
We propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction.
We generate the parameters of 3D Gaussians from a single image in a single forward pass.
Our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy.
arXiv Detail & Related papers (2024-10-10T14:29:00Z) - Gaussian Deja-vu: Creating Controllable 3D Gaussian Head-Avatars with Enhanced Generalization and Personalization Abilities [10.816370283498287]
We introduce the "Gaussian Deja-vu" framework, which first obtains a generalized model of the head avatar and then personalizes the result.
For personalizing, we propose learnable expression-aware rectification blendmaps, ensuring rapid convergence without the reliance on neural networks.
It outperforms state-of-the-art 3D Gaussian head avatars in terms of photorealistic quality as well as reduces training time consumption to at least a quarter of the existing methods.
arXiv Detail & Related papers (2024-09-23T00:11:30Z) - Human-3Diffusion: Realistic Avatar Creation via Explicit 3D Consistent Diffusion Models [29.73743772971411]
We propose Human 3Diffusion: Realistic Avatar Creation via Explicit 3D Consistent Diffusion.<n>Our key insight is that 2D multi-view diffusion and 3D reconstruction models provide complementary information for each other.<n>Our proposed framework outperforms state-of-the-art methods and enables the creation of realistic avatars from a single RGB image.
arXiv Detail & Related papers (2024-06-12T17:57:25Z) - Deformable 3D Gaussian Splatting for Animatable Human Avatars [50.61374254699761]
We propose a fully explicit approach to construct a digital avatar from as little as a single monocular sequence.
ParDy-Human constitutes an explicit model for realistic dynamic human avatars which requires significantly fewer training views and images.
Our avatars learning is free of additional annotations such as Splat masks and can be trained with variable backgrounds while inferring full-resolution images efficiently even on consumer hardware.
arXiv Detail & Related papers (2023-12-22T20:56:46Z) - DreamAvatar: Text-and-Shape Guided 3D Human Avatar Generation via
Diffusion Models [55.71306021041785]
We present DreamAvatar, a text-and-shape guided framework for generating high-quality 3D human avatars.
We leverage the SMPL model to provide shape and pose guidance for the generation.
We also jointly optimize the losses computed from the full body and from the zoomed-in 3D head to alleviate the common multi-face ''Janus'' problem.
arXiv Detail & Related papers (2023-04-03T12:11:51Z) - Rodin: A Generative Model for Sculpting 3D Digital Avatars Using
Diffusion [66.26780039133122]
This paper presents a 3D generative model that uses diffusion models to automatically generate 3D digital avatars.
The memory and processing costs in 3D are prohibitive for producing the rich details required for high-quality avatars.
We can generate highly detailed avatars with realistic hairstyles and facial hair like beards.
arXiv Detail & Related papers (2022-12-12T18:59:40Z) - AvatarGen: A 3D Generative Model for Animatable Human Avatars [108.11137221845352]
AvatarGen is an unsupervised generation of 3D-aware clothed humans with various appearances and controllable geometries.
Our method can generate animatable 3D human avatars with high-quality appearance and geometry modeling.
It is competent for many applications, e.g., single-view reconstruction, re-animation, and text-guided synthesis/editing.
arXiv Detail & Related papers (2022-11-26T15:15:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.