SeqAffordSplat: Scene-level Sequential Affordance Reasoning on 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2507.23772v1
- Date: Thu, 31 Jul 2025 17:56:55 GMT
- Title: SeqAffordSplat: Scene-level Sequential Affordance Reasoning on 3D Gaussian Splatting
- Authors: Di Li, Jie Feng, Jiahao Chen, Weisheng Dong, Guanbin Li, Yuhui Zheng, Mingtao Feng, Guangming Shi,
- Abstract summary: We introduce the novel task of Sequential 3D Gaussian Affordance Reasoning.<n>We then propose SeqSplatNet, an end-to-end framework that directly maps an instruction to a sequence of 3D affordance masks.<n>Our method sets a new state-of-the-art on our challenging benchmark, effectively advancing affordance reasoning from single-step interactions to complex, sequential tasks at the scene level.
- Score: 85.87902260102652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D affordance reasoning, the task of associating human instructions with the functional regions of 3D objects, is a critical capability for embodied agents. Current methods based on 3D Gaussian Splatting (3DGS) are fundamentally limited to single-object, single-step interactions, a paradigm that falls short of addressing the long-horizon, multi-object tasks required for complex real-world applications. To bridge this gap, we introduce the novel task of Sequential 3D Gaussian Affordance Reasoning and establish SeqAffordSplat, a large-scale benchmark featuring 1800+ scenes to support research on long-horizon affordance understanding in complex 3DGS environments. We then propose SeqSplatNet, an end-to-end framework that directly maps an instruction to a sequence of 3D affordance masks. SeqSplatNet employs a large language model that autoregressively generates text interleaved with special segmentation tokens, guiding a conditional decoder to produce the corresponding 3D mask. To handle complex scene geometry, we introduce a pre-training strategy, Conditional Geometric Reconstruction, where the model learns to reconstruct complete affordance region masks from known geometric observations, thereby building a robust geometric prior. Furthermore, to resolve semantic ambiguities, we design a feature injection mechanism that lifts rich semantic features from 2D Vision Foundation Models (VFM) and fuses them into the 3D decoder at multiple scales. Extensive experiments demonstrate that our method sets a new state-of-the-art on our challenging benchmark, effectively advancing affordance reasoning from single-step interactions to complex, sequential tasks at the scene level.
Related papers
- Interpretable Single-View 3D Gaussian Splatting using Unsupervised Hierarchical Disentangled Representation Learning [46.85417907244265]
We propose an interpretable single-view 3DGS framework, termed 3DisGS, to discover both coarse- and fine-grained 3D semantics.<n>Our model achieves 3D disentanglement while preserving high-quality and rapid reconstruction.
arXiv Detail & Related papers (2025-04-05T14:42:13Z) - TSGaussian: Semantic and Depth-Guided Target-Specific Gaussian Splatting from Sparse Views [18.050257821756148]
TSGaussian is a novel framework that combines semantic constraints with depth priors to avoid geometry degradation in novel view synthesis tasks.<n>Our approach prioritizes computational resources on designated targets while minimizing background allocation.<n>Extensive experiments demonstrate that TSGaussian outperforms state-of-the-art methods on three standard datasets.
arXiv Detail & Related papers (2024-12-13T11:26:38Z) - Bootstraping Clustering of Gaussians for View-consistent 3D Scene Understanding [59.51535163599723]
FreeGS is an unsupervised semantic-embedded 3DGS framework that achieves view-consistent 3D scene understanding without the need for 2D labels.<n>FreeGS performs comparably to state-of-the-art methods while avoiding the complex data preprocessing workload.
arXiv Detail & Related papers (2024-11-29T08:52:32Z) - Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - AutoInst: Automatic Instance-Based Segmentation of LiDAR 3D Scans [41.17467024268349]
Making sense of 3D environments requires fine-grained scene understanding.
We propose to predict instance segmentations for 3D scenes in an unsupervised way.
Our approach attains 13.3% higher Average Precision and 9.1% higher F1 score compared to the best-performing baseline.
arXiv Detail & Related papers (2024-03-24T22:53:16Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
We introduce SAI3D, a novel zero-shot 3D instance segmentation approach.
Our method partitions a 3D scene into geometric primitives, which are then progressively merged into 3D instance segmentations.
Empirical evaluations on ScanNet, Matterport3D and the more challenging ScanNet++ datasets demonstrate the superiority of our approach.
arXiv Detail & Related papers (2023-12-17T09:05:47Z) - Structural Multiplane Image: Bridging Neural View Synthesis and 3D
Reconstruction [39.89856628467095]
We introduce the Structural MPI (S-MPI), where the plane structure approximates 3D scenes concisely.
Despite the intuition and demand of applying S-MPI, great challenges are introduced, e.g., high-fidelity approximation for both RGBA layers and plane poses.
Our method outperforms both previous state-of-the-art MPI-based view synthesis methods and planar reconstruction methods.
arXiv Detail & Related papers (2023-03-10T14:18:40Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
We propose a three-stage framework named Multi-Initialization Optimization Network (MION)
In the first stage, we strategically select different coarse 3D reconstruction candidates which are compatible with the 2D keypoints of input sample.
In the second stage, we design a mesh refinement transformer (MRT) to respectively refine each coarse reconstruction result via a self-attention mechanism.
Finally, a Consistency Estimation Network (CEN) is proposed to find the best result from mutiple candidates by evaluating if the visual evidence in RGB image matches a given 3D reconstruction.
arXiv Detail & Related papers (2021-12-24T02:43:58Z) - Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose
Estimation [61.98690211671168]
We propose a Multi-level Attention-Decoder Network (MAED) to model multi-level attentions in a unified framework.
With the training set of 3DPW, MAED outperforms previous state-of-the-art methods by 6.2, 7.2, and 2.4 mm of PA-MPJPE.
arXiv Detail & Related papers (2021-09-06T09:06:17Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.