Melody-Lyrics Matching with Contrastive Alignment Loss
- URL: http://arxiv.org/abs/2508.00123v1
- Date: Thu, 31 Jul 2025 19:23:57 GMT
- Title: Melody-Lyrics Matching with Contrastive Alignment Loss
- Authors: Changhong Wang, Michel Olvera, Gaƫl Richard,
- Abstract summary: We present melody-lyrics matching (MLM), a new task which retrieves potential lyrics for a given symbolic melody from text sources.<n>We propose a self-supervised representation learning framework with contrastive alignment loss for melody and lyrics.<n>We demonstrate that our method can match melody with coherent and singable lyrics with empirical results and intuitive examples.
- Score: 11.986224119327387
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The connection between music and lyrics is far beyond semantic bonds. Conceptual pairs in the two modalities such as rhythm and rhyme, note duration and syllabic stress, and structure correspondence, raise a compelling yet seldom-explored direction in the field of music information retrieval. In this paper, we present melody-lyrics matching (MLM), a new task which retrieves potential lyrics for a given symbolic melody from text sources. Rather than generating lyrics from scratch, MLM essentially exploits the relationships between melody and lyrics. We propose a self-supervised representation learning framework with contrastive alignment loss for melody and lyrics. This has the potential to leverage the abundance of existing songs with paired melody and lyrics. No alignment annotations are required. Additionally, we introduce sylphone, a novel representation for lyrics at syllable-level activated by phoneme identity and vowel stress. We demonstrate that our method can match melody with coherent and singable lyrics with empirical results and intuitive examples. We open source code and provide matching examples on the companion webpage: https://github.com/changhongw/mlm.
Related papers
- REFFLY: Melody-Constrained Lyrics Editing Model [50.03960548399128]
This paper introduces REFFLY, the first revision framework for editing and generating melody-aligned lyrics.<n>We train the lyric revision module using our synthesized melody-aligned lyrics dataset.<n>To further enhance the revision ability, we propose training-frees aimed at preserving both semantic meaning and musical consistency.
arXiv Detail & Related papers (2024-08-30T23:22:34Z) - SongComposer: A Large Language Model for Lyric and Melody Generation in Song Composition [82.38021790213752]
SongComposer is a music-specialized large language model (LLM)<n>It integrates the capability of simultaneously composing melodies into LLMs by leveraging three key innovations.<n>It outperforms advanced LLMs in tasks such as lyric-to-melody generation, melody-to-lyric generation, song continuation, and text-to-song creation.<n>We will release SongCompose, a large-scale dataset for training, containing paired lyrics and melodies in Chinese and English.
arXiv Detail & Related papers (2024-02-27T16:15:28Z) - Unsupervised Melody-to-Lyric Generation [91.29447272400826]
We propose a method for generating high-quality lyrics without training on any aligned melody-lyric data.
We leverage the segmentation and rhythm alignment between melody and lyrics to compile the given melody into decoding constraints.
Our model can generate high-quality lyrics that are more on-topic, singable, intelligible, and coherent than strong baselines.
arXiv Detail & Related papers (2023-05-30T17:20:25Z) - Unsupervised Melody-Guided Lyrics Generation [84.22469652275714]
We propose to generate pleasantly listenable lyrics without training on melody-lyric aligned data.
We leverage the crucial alignments between melody and lyrics and compile the given melody into constraints to guide the generation process.
arXiv Detail & Related papers (2023-05-12T20:57:20Z) - Re-creation of Creations: A New Paradigm for Lyric-to-Melody Generation [158.54649047794794]
Re-creation of Creations (ROC) is a new paradigm for lyric-to-melody generation.
ROC achieves good lyric-melody feature alignment in lyric-to-melody generation.
arXiv Detail & Related papers (2022-08-11T08:44:47Z) - SongMASS: Automatic Song Writing with Pre-training and Alignment
Constraint [54.012194728496155]
SongMASS is proposed to overcome the challenges of lyric-to-melody generation and melody-to-lyric generation.
It leverages masked sequence to sequence (MASS) pre-training and attention based alignment modeling.
We show that SongMASS generates lyric and melody with significantly better quality than the baseline method.
arXiv Detail & Related papers (2020-12-09T16:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.