GEPAR3D: Geometry Prior-Assisted Learning for 3D Tooth Segmentation
- URL: http://arxiv.org/abs/2508.00155v1
- Date: Thu, 31 Jul 2025 20:46:58 GMT
- Title: GEPAR3D: Geometry Prior-Assisted Learning for 3D Tooth Segmentation
- Authors: Tomasz Szczepański, Szymon Płotka, Michal K. Grzeszczyk, Arleta Adamowicz, Piotr Fudalej, Przemysław Korzeniowski, Tomasz Trzciński, Arkadiusz Sitek,
- Abstract summary: Tooth segmentation in Cone-Beam Computed Tomography (CBCT) remains challenging.<n>We introduce GEPAR3D, a novel approach that unifies instance detection and multi-class segmentation into a single step to improve root segmentation.<n>We leverage a deep watershed method, modeling each tooth as a continuous 3D energy basin encoding voxel distances to boundaries.
- Score: 0.15487122608774898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tooth segmentation in Cone-Beam Computed Tomography (CBCT) remains challenging, especially for fine structures like root apices, which is critical for assessing root resorption in orthodontics. We introduce GEPAR3D, a novel approach that unifies instance detection and multi-class segmentation into a single step tailored to improve root segmentation. Our method integrates a Statistical Shape Model of dentition as a geometric prior, capturing anatomical context and morphological consistency without enforcing restrictive adjacency constraints. We leverage a deep watershed method, modeling each tooth as a continuous 3D energy basin encoding voxel distances to boundaries. This instance-aware representation ensures accurate segmentation of narrow, complex root apices. Trained on publicly available CBCT scans from a single center, our method is evaluated on external test sets from two in-house and two public medical centers. GEPAR3D achieves the highest overall segmentation performance, averaging a Dice Similarity Coefficient (DSC) of 95.0% (+2.8% over the second-best method) and increasing recall to 95.2% (+9.5%) across all test sets. Qualitative analyses demonstrated substantial improvements in root segmentation quality, indicating significant potential for more accurate root resorption assessment and enhanced clinical decision-making in orthodontics. We provide the implementation and dataset at https://github.com/tomek1911/GEPAR3D.
Related papers
- A topology-preserving three-stage framework for fully-connected coronary artery extraction [39.47027832777158]
Coronary artery extraction is a crucial prerequisite for computer-aided diagnosis of coronary artery disease.<n>We propose a topology-preserving three-stage framework for fully-connected coronary artery extraction.<n>This framework includes vessel segmentation, centerline reconnection, and missing vessel reconstruction.
arXiv Detail & Related papers (2025-04-02T11:04:44Z) - 3D Dental Model Segmentation with Geometrical Boundary Preserving [19.232921210620447]
3D intraoral scan mesh is widely used in digital dentistry diagnosis, segmenting 3D intraoral scan mesh is a critical preliminary task.<n>Deep learning-based methods are capable of the high accuracy segmentation of crown.<n>However, the segmentation accuracy at the junction between the crown and the gum is still below average.
arXiv Detail & Related papers (2025-03-31T04:00:11Z) - GeoT: Geometry-guided Instance-dependent Transition Matrix for Semi-supervised Tooth Point Cloud Segmentation [48.64133802117796]
GeoT is a framework that employs instance-dependent transition matrix (IDTM) to explicitly model noise in pseudo labels for semi-supervised dental segmentation.<n>Specifically, to handle the extensive solution space of IDTM arising from tens of thousands of dental points, we introduce tooth geometric priors.<n>Our method can make full utilization of unlabeled data to facilitate segmentation, achieving performance comparable to fully supervised methods with only $20%$ of the labeled data.
arXiv Detail & Related papers (2025-03-21T09:43:57Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.<n>This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - A Deep Learning Approach to Teeth Segmentation and Orientation from
Panoramic X-rays [1.7366868394060984]
We present a comprehensive approach to teeth segmentation and orientation from panoramic X-ray images, leveraging deep learning techniques.
We build our model based on FUSegNet, a popular model originally developed for wound segmentation.
We introduce oriented bounding box (OBB) generation through principal component analysis (PCA) for precise tooth orientation estimation.
arXiv Detail & Related papers (2023-10-26T06:01:25Z) - Attention and Pooling based Sigmoid Colon Segmentation in 3D CT images [11.861208424384046]
The sigmoid colon is a crucial aspect of treating diverticulitis.
This research presents a novel deep learning architecture for segmenting the sigmoid colon from Computed Tomography (CT) images.
arXiv Detail & Related papers (2023-09-25T04:52:46Z) - TFormer: 3D Tooth Segmentation in Mesh Scans with Geometry Guided
Transformer [37.47317212620463]
Optical Intra-oral Scanners (IOS) are widely used in digital dentistry, providing 3-Dimensional (3D) and high-resolution geometrical information of dental crowns and the gingiva.
Previous methods are error-prone in complicated tooth-tooth or tooth-gingiva boundaries, and usually exhibit unsatisfactory results across various patients.
We propose a novel method based on 3D transformer architectures that is evaluated with large-scale and high-resolution 3D IOS datasets.
arXiv Detail & Related papers (2022-10-29T15:20:54Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
emphiMeshSegNet in the first stage of TS-MDL reached an averaged Dice similarity coefficient (DSC) at 0.953pm0.076$, significantly outperforming the original MeshSegNet.
PointNet-Reg achieved a mean absolute error (MAE) of $0.623pm0.718, mm$ in distances between the prediction and ground truth for $44$ landmarks, which is superior compared with other networks for landmark detection.
arXiv Detail & Related papers (2021-09-24T13:00:26Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.