Learning Personalised Human Internal Cognition from External Expressive Behaviours for Real Personality Recognition
- URL: http://arxiv.org/abs/2508.00205v1
- Date: Thu, 31 Jul 2025 23:12:09 GMT
- Title: Learning Personalised Human Internal Cognition from External Expressive Behaviours for Real Personality Recognition
- Authors: Xiangyu Kong, Hengde Zhu, Haoqin Sun, Zhihao Guo, Jiayan Gu, Xinyi Ni, Wei Zhang, Shizhe Liu, Siyang Song,
- Abstract summary: We propose a novel RPR approach that efficiently simulates personalised internal cognition from short audio-visual behaviours expressed by the target individual.<n>To simulate real personality-related cognition, an end-to-end strategy is designed to jointly train our cognition simulation, 2D graph construction, and personality recognition modules.
- Score: 7.255945825285533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic real personality recognition (RPR) aims to evaluate human real personality traits from their expressive behaviours. However, most existing solutions generally act as external observers to infer observers' personality impressions based on target individuals' expressive behaviours, which significantly deviate from their real personalities and consistently lead to inferior recognition performance. Inspired by the association between real personality and human internal cognition underlying the generation of expressive behaviours, we propose a novel RPR approach that efficiently simulates personalised internal cognition from easy-accessible external short audio-visual behaviours expressed by the target individual. The simulated personalised cognition, represented as a set of network weights that enforce the personalised network to reproduce the individual-specific facial reactions, is further encoded as a novel graph containing two-dimensional node and edge feature matrices, with a novel 2D Graph Neural Network (2D-GNN) proposed for inferring real personality traits from it. To simulate real personality-related cognition, an end-to-end strategy is designed to jointly train our cognition simulation, 2D graph construction, and personality recognition modules.
Related papers
- Emergent Active Perception and Dexterity of Simulated Humanoids from Visual Reinforcement Learning [69.71072181304066]
We introduce Perceptive Dexterous Control (PDC), a framework for vision-driven whole-body control with simulated humanoids.<n>PDC operates solely on egocentric vision for task specification, enabling object search, target placement, and skill selection through visual cues.<n>We show that training from scratch with reinforcement learning can produce emergent behaviors such as active search.
arXiv Detail & Related papers (2025-05-18T07:33:31Z) - Modelling Emotions in Face-to-Face Setting: The Interplay of Eye-Tracking, Personality, and Temporal Dynamics [1.4645774851707578]
In this study, we showcase how integrating eye-tracking data, temporal dynamics, and personality traits can substantially enhance the detection of both perceived and felt emotions.<n>Our findings inform the design of future affective computing and human-agent systems.
arXiv Detail & Related papers (2025-03-18T13:15:32Z) - Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
Personality recognition aims to identify the personality traits implied in user data such as dialogues and social media posts.
We propose a novel task named Explainable Personality Recognition, aiming to reveal the reasoning process as supporting evidence of the personality trait.
arXiv Detail & Related papers (2024-09-29T14:41:43Z) - PersonalityScanner: Exploring the Validity of Personality Assessment Based on Multimodal Signals in Virtual Reality [44.15145632980038]
PersonalityScanner is a VR simulator to stimulate cognitive processes and simulate daily behaviors.
We collect a synchronous multi-modal dataset with ten modalities, including first/third-person video, audio, text, eye tracking, facial microexpression, pose, depth data, log, and inertial measurement unit.
arXiv Detail & Related papers (2024-07-29T06:17:41Z) - Is persona enough for personality? Using ChatGPT to reconstruct an agent's latent personality from simple descriptions [2.6080756513915824]
Personality, a fundamental aspect of human cognition, contains a range of traits that influence behaviors, thoughts, and emotions.
This paper explores the capabilities of large language models (LLMs) in reconstructing these complex cognitive attributes based only on simple descriptions containing socio-demographic and personality type information.
arXiv Detail & Related papers (2024-06-18T02:32:57Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCue is a novel approach for improving visual feature extraction in HOI detection.
We develop a transformer-based feature extraction module with a multi-tower architecture that integrates contextual cues into both instance and interaction detectors.
arXiv Detail & Related papers (2023-11-26T09:11:32Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Learning Person-specific Network Representation for Apparent Personality
Traits Recognition [3.19935268158731]
We propose to recognize apparent personality recognition approach which first trains a person-specific network for each subject.
We then encode the weights of the person-specific network to a graph representation, as the personality representation for the subject.
The experimental results show that our novel network weights-based approach achieved superior performance than most traditional latent feature-based approaches.
arXiv Detail & Related papers (2023-03-01T06:10:39Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
We propose Contrastive Inhibitory Adaptati On (CIAO), a mechanism that adapts the last layer of facial encoders to depict specific affective characteristics on different datasets.
CIAO presents an improvement in facial expression recognition performance over six different datasets with very unique affective representations.
arXiv Detail & Related papers (2022-08-10T15:46:05Z) - Learning Graph Representation of Person-specific Cognitive Processes
from Audio-visual Behaviours for Automatic Personality Recognition [17.428626029689653]
We propose to represent the target subjects person-specific cognition in the form of a person-specific CNN architecture.
Each person-specific CNN is explored by the Neural Architecture Search (NAS) and a novel adaptive loss function.
Experimental results show that the produced graph representations are well associated with target subjects' personality traits.
arXiv Detail & Related papers (2021-10-26T11:04:23Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
Intuitive psychology is the ability to reason about hidden mental variables that drive observable actions.
Despite recent interest in machine agents that reason about other agents, it is not clear if such agents learn or hold the core psychology principles that drive human reasoning.
We present a benchmark consisting of procedurally generated 3D animations, AGENT, structured around four scenarios.
arXiv Detail & Related papers (2021-02-24T14:58:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.