Video Forgery Detection with Optical Flow Residuals and Spatial-Temporal Consistency
- URL: http://arxiv.org/abs/2508.00397v1
- Date: Fri, 01 Aug 2025 07:51:35 GMT
- Title: Video Forgery Detection with Optical Flow Residuals and Spatial-Temporal Consistency
- Authors: Xi Xue, Kunio Suzuki, Nabarun Goswami, Takuya Shintate,
- Abstract summary: We propose a detection framework that leverages spatial-temporal consistency by combining RGB appearance features with optical flow residuals.<n>By integrating these complementary features, the proposed method effectively detects a wide range of forged videos.
- Score: 1.7061868168035932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of diffusion-based video generation models has led to increasingly realistic synthetic content, presenting new challenges for video forgery detection. Existing methods often struggle to capture fine-grained temporal inconsistencies, particularly in AI-generated videos with high visual fidelity and coherent motion. In this work, we propose a detection framework that leverages spatial-temporal consistency by combining RGB appearance features with optical flow residuals. The model adopts a dual-branch architecture, where one branch analyzes RGB frames to detect appearance-level artifacts, while the other processes flow residuals to reveal subtle motion anomalies caused by imperfect temporal synthesis. By integrating these complementary features, the proposed method effectively detects a wide range of forged videos. Extensive experiments on text-to-video and image-to-video tasks across ten diverse generative models demonstrate the robustness and strong generalization ability of the proposed approach.
Related papers
- VDEGaussian: Video Diffusion Enhanced 4D Gaussian Splatting for Dynamic Urban Scenes Modeling [68.65587507038539]
We present a novel video diffusion-enhanced 4D Gaussian Splatting framework for dynamic urban scene modeling.<n>Our key insight is to distill robust, temporally consistent priors from a test-time adapted video diffusion model.<n>Our method significantly enhances dynamic modeling, especially for fast-moving objects, achieving an approximate PSNR gain of 2 dB.
arXiv Detail & Related papers (2025-08-04T07:24:05Z) - DiffuEraser: A Diffusion Model for Video Inpainting [13.292164408616257]
We introduce DiffuEraser, a video inpainting model based on stable diffusion, to fill masked regions with greater details and more coherent structures.<n>We also expand the temporal receptive fields of both the prior model and DiffuEraser, and further enhance consistency by leveraging the temporal smoothing property of Video Diffusion Models.
arXiv Detail & Related papers (2025-01-17T08:03:02Z) - Optical-Flow Guided Prompt Optimization for Coherent Video Generation [51.430833518070145]
We propose a framework called MotionPrompt that guides the video generation process via optical flow.<n>We optimize learnable token embeddings during reverse sampling steps by using gradients from a trained discriminator applied to random frame pairs.<n>This approach allows our method to generate visually coherent video sequences that closely reflect natural motion dynamics, without compromising the fidelity of the generated content.
arXiv Detail & Related papers (2024-11-23T12:26:52Z) - Diffusion Priors for Dynamic View Synthesis from Monocular Videos [59.42406064983643]
Dynamic novel view synthesis aims to capture the temporal evolution of visual content within videos.
We first finetune a pretrained RGB-D diffusion model on the video frames using a customization technique.
We distill the knowledge from the finetuned model to a 4D representations encompassing both dynamic and static Neural Radiance Fields.
arXiv Detail & Related papers (2024-01-10T23:26:41Z) - Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World
Video Super-Resolution [65.91317390645163]
Upscale-A-Video is a text-guided latent diffusion framework for video upscaling.
It ensures temporal coherence through two key mechanisms: locally, it integrates temporal layers into U-Net and VAE-Decoder, maintaining consistency within short sequences.
It also offers greater flexibility by allowing text prompts to guide texture creation and adjustable noise levels to balance restoration and generation.
arXiv Detail & Related papers (2023-12-11T18:54:52Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
We propose a Dynamic Erasing Network (DE-Net) for weakly supervised video anomaly detection.
We first propose a multi-scale temporal modeling module, capable of extracting features from segments of varying lengths.
Then, we design a dynamic erasing strategy, which dynamically assesses the completeness of the detected anomalies.
arXiv Detail & Related papers (2023-12-04T09:40:11Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.