PIF-Net: Ill-Posed Prior Guided Multispectral and Hyperspectral Image Fusion via Invertible Mamba and Fusion-Aware LoRA
- URL: http://arxiv.org/abs/2508.00453v1
- Date: Fri, 01 Aug 2025 09:17:17 GMT
- Title: PIF-Net: Ill-Posed Prior Guided Multispectral and Hyperspectral Image Fusion via Invertible Mamba and Fusion-Aware LoRA
- Authors: Baisong Li, Xingwang Wang, Haixiao Xu,
- Abstract summary: The goal of multispectral and hyperspectral image fusion (MHIF) is to generate high-quality images that simultaneously possess rich spectral information and fine spatial details.<n>Previous studies have not effectively addressed the ill-posed nature caused by data misalignment.<n>We propose a fusion framework named PIF-Net, which explicitly incorporates ill-posed priors to effectively fuse multispectral images and hyperspectral images.
- Score: 0.16385815610837165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of multispectral and hyperspectral image fusion (MHIF) is to generate high-quality images that simultaneously possess rich spectral information and fine spatial details. However, due to the inherent trade-off between spectral and spatial information and the limited availability of observations, this task is fundamentally ill-posed. Previous studies have not effectively addressed the ill-posed nature caused by data misalignment. To tackle this challenge, we propose a fusion framework named PIF-Net, which explicitly incorporates ill-posed priors to effectively fuse multispectral images and hyperspectral images. To balance global spectral modeling with computational efficiency, we design a method based on an invertible Mamba architecture that maintains information consistency during feature transformation and fusion, ensuring stable gradient flow and process reversibility. Furthermore, we introduce a novel fusion module called the Fusion-Aware Low-Rank Adaptation module, which dynamically calibrates spectral and spatial features while keeping the model lightweight. Extensive experiments on multiple benchmark datasets demonstrate that PIF-Net achieves significantly better image restoration performance than current state-of-the-art methods while maintaining model efficiency.
Related papers
- A Fusion-Guided Inception Network for Hyperspectral Image Super-Resolution [4.487807378174191]
We propose a single-image super-resolution model called the Fusion-Guided Inception Network (FGIN)<n>Specifically, we first employ a spectral-spatial fusion module to effectively integrate spectral and spatial information.<n>An Inception-like hierarchical feature extraction strategy is used to capture multiscale spatial dependencies.<n>To further enhance reconstruction quality, we incorporate an optimized upsampling module that combines bilinear with depthwise separable convolutions.
arXiv Detail & Related papers (2025-05-06T11:15:59Z) - Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches.
In this paper, we propose a model-based deep unfolded method for satellite image fusion.
Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-09-04T13:05:00Z) - CoMoFusion: Fast and High-quality Fusion of Infrared and Visible Image with Consistency Model [20.02742423120295]
Current generative models based fusion methods often suffer from unstable training and slow inference speed.
CoMoFusion can generate the high-quality images and achieve fast image inference speed.
In order to enhance the texture and salient information of fused images, a novel loss based on pixel value selection is also designed.
arXiv Detail & Related papers (2024-05-31T12:35:06Z) - A Dual Domain Multi-exposure Image Fusion Network based on the
Spatial-Frequency Integration [57.14745782076976]
Multi-exposure image fusion aims to generate a single high-dynamic image by integrating images with different exposures.
We propose a novelty perspective on multi-exposure image fusion via the Spatial-Frequency Integration Framework, named MEF-SFI.
Our method achieves visual-appealing fusion results against state-of-the-art multi-exposure image fusion approaches.
arXiv Detail & Related papers (2023-12-17T04:45:15Z) - Fusion of Infrared and Visible Images based on Spatial-Channel
Attentional Mechanism [3.388001684915793]
We present AMFusionNet, an innovative approach to infrared and visible image fusion (IVIF)
By assimilating thermal details from infrared images with texture features from visible sources, our method produces images enriched with comprehensive information.
Our method outperforms state-of-the-art algorithms in terms of quality and quantity.
arXiv Detail & Related papers (2023-08-25T21:05:11Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - Unsupervised Hyperspectral and Multispectral Images Fusion Based on the
Cycle Consistency [21.233354336608205]
We propose an unsupervised HSI and MSI fusion model based on the cycle consistency, called CycFusion.
The CycFusion learns the domain transformation between low spatial resolution HSI (LrHSI) and high spatial resolution MSI (HrMSI)
Experiments conducted on several datasets show that our proposed model outperforms all compared unsupervised fusion methods.
arXiv Detail & Related papers (2023-07-07T06:47:15Z) - A Task-guided, Implicitly-searched and Meta-initialized Deep Model for
Image Fusion [69.10255211811007]
We present a Task-guided, Implicit-searched and Meta- generalizationd (TIM) deep model to address the image fusion problem in a challenging real-world scenario.
Specifically, we propose a constrained strategy to incorporate information from downstream tasks to guide the unsupervised learning process of image fusion.
Within this framework, we then design an implicit search scheme to automatically discover compact architectures for our fusion model with high efficiency.
arXiv Detail & Related papers (2023-05-25T08:54:08Z) - Equivariant Multi-Modality Image Fusion [124.11300001864579]
We propose the Equivariant Multi-Modality imAge fusion paradigm for end-to-end self-supervised learning.
Our approach is rooted in the prior knowledge that natural imaging responses are equivariant to certain transformations.
Experiments confirm that EMMA yields high-quality fusion results for infrared-visible and medical images.
arXiv Detail & Related papers (2023-05-19T05:50:24Z) - DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion [144.9653045465908]
We propose a novel fusion algorithm based on the denoising diffusion probabilistic model (DDPM)
Our approach yields promising fusion results in infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2023-03-13T04:06:42Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
We propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network.
We show that CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2022-11-26T02:40:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.