Towards Efficient Certification of Maritime Remote Operation Centers
- URL: http://arxiv.org/abs/2508.00543v1
- Date: Fri, 01 Aug 2025 11:30:47 GMT
- Title: Towards Efficient Certification of Maritime Remote Operation Centers
- Authors: Christian Neurohr, Marcel Saager, Lina Putze, Jan-Patrick Osterloh, Karina Rothemann, Hilko Wiards, Eckard Böde, Axel Hahn,
- Abstract summary: We present a concept for a hazard database that supports the safeguarding and certification of remote operation centers.<n>A preliminary suitability analysis unveils which methods for hazard analysis and risk assessment can adequately fill this hazard database.
- Score: 0.08030359871216612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Additional automation being build into ships implies a shift of crew from ship to shore. However, automated ships still have to be monitored and, in some situations, controlled remotely. These tasks are carried out by human operators located in shore-based remote operation centers. In this work, we present a concept for a hazard database that supports the safeguarding and certification of such remote operation centers. The concept is based on a categorization of hazard sources which we derive from a generic functional architecture. A subsequent preliminary suitability analysis unveils which methods for hazard analysis and risk assessment can adequately fill this hazard database.
Related papers
- Bird's-eye view safety monitoring for the construction top under the tower crane [3.275477941202418]
We present an AI-based fully automated safety monitoring system for tower crane lifting from the bird's-eye view.<n>The system achieved a 3D data fusion for localization of humans and MiCs by integrating the captured information from camera and LiDAR.
arXiv Detail & Related papers (2025-06-22T12:52:20Z) - Designing Control Barrier Function via Probabilistic Enumeration for Safe Reinforcement Learning Navigation [55.02966123945644]
We propose a hierarchical control framework leveraging neural network verification techniques to design control barrier functions (CBFs) and policy correction mechanisms.<n>Our approach relies on probabilistic enumeration to identify unsafe regions of operation, which are then used to construct a safe CBF-based control layer.<n>These experiments demonstrate the ability of the proposed solution to correct unsafe actions while preserving efficient navigation behavior.
arXiv Detail & Related papers (2025-04-30T13:47:25Z) - Post-disaster building indoor damage and survivor detection using autonomous path planning and deep learning with unmanned aerial vehicles [5.897549460175895]
This paper proposed an autonomous inspection approach for structural damage inspection and survivor detection in the post-disaster building indoor scenario.<n>It incorporates an autonomous navigation method, deep learning-based damage and survivor detection method, and a customized low-cost micro aerial vehicle (MAV) with onboard sensors.<n> Experimental studies in a pseudo-post-disaster office building have shown the proposed methodology can achieve high accuracy in structural damage inspection and survivor detection.
arXiv Detail & Related papers (2025-03-13T04:13:48Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Aeolus Ocean -- A simulation environment for the autonomous
COLREG-compliant navigation of Unmanned Surface Vehicles using Deep
Reinforcement Learning and Maritime Object Detection [0.0]
navigational autonomy in unmanned surface vehicles (USVs) in the maritime sector can lead to safer waters as well as reduced operating costs.
We describe the novel development of a COLREG-compliant DRL-based collision avoidant navigational system with CV-based awareness in a realistic ocean simulation environment.
arXiv Detail & Related papers (2023-07-13T11:20:18Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
Connected and autonomous vehicles (CAVs) can reduce human errors in traffic accidents, increase road efficiency, and execute various tasks. Reaping these benefits requires CAVs to autonomously navigate to target destinations.
This article proposes solutions using the convergence of communication theory, control theory, and machine learning to enable effective and secure CAV navigation.
arXiv Detail & Related papers (2023-07-05T21:38:36Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
It is crucial to optimize the performance of DRL-based agents while providing guarantees about their behavior.
This paper presents a novel technique for incorporating domain-expert knowledge into a constrained DRL training loop.
Our experiments demonstrate that using our approach to leverage expert knowledge dramatically improves the safety and the performance of the agent.
arXiv Detail & Related papers (2022-06-20T07:19:38Z) - ADAPT: An Open-Source sUAS Payload for Real-Time Disaster Prediction and
Response with AI [55.41644538483948]
Small unmanned aircraft systems (sUAS) are becoming prominent components of many humanitarian assistance and disaster response operations.
We have developed the free and open-source ADAPT multi-mission payload for deploying real-time AI and computer vision onboard a sUAS.
We demonstrate the example mission of real-time, in-flight ice segmentation to monitor river ice state and provide timely predictions of catastrophic flooding events.
arXiv Detail & Related papers (2022-01-25T14:51:19Z) - AutoSOS: Towards Multi-UAV Systems Supporting Maritime Search and Rescue
with Lightweight AI and Edge Computing [27.15999421608932]
This paper presents the research directions of the AutoSOS project, where we work in the development of an autonomous multi-robot search and rescue assistance platform.
The platform is meant to perform reconnaissance missions for initial assessment of the environment using novel adaptive deep learning algorithms.
When drones find potential objects, they will send their sensor data to the vessel to verity the findings with increased accuracy.
arXiv Detail & Related papers (2020-05-07T12:22:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.